
Oracle® Communications Diameter
Signaling Router
DCA Programmer's Guide

Release 9.0.0.0.0
F79674-01
April 2023

Oracle Communications Diameter Signaling Router DCA Programmer's Guide, Release 9.0.0.0.0

F79674-01

Copyright © 2011, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

1.1 References 1-1

1.2 Acronyms and Terminologies 1-1

2 DCA Activation and Deactivation

2.1 DCA Activation 2-1

2.1.1 DCA Framework Activation 2-2

2.1.2 DCA App Activation 2-3

2.1.3 Post-Activation DCA App State 2-4

2.2 DCA Deactivation 2-4

2.2.1 DCA Application De-Activation 2-4

2.2.2 DCA Framework De-Activation 2-4

3 DCA App Provisioning

3.1 The Blacklist DCA App 3-1

3.2 Prerequisites 3-1

3.3 DCA App Provisioning Process 3-1

3.3.1 Configure the DCA App's General Options and Behavior 3-1

3.3.2 Create New Development Application Version 3-2

3.3.3 Define the configuration data structure 3-3

3.3.4 Provision the Configuration Data 3-3

3.3.5 Provision the Business Logic 3-5

3.3.5.1 Where is the Perl script being executed? 3-6

3.3.5.2 How do the Event Handlers get invoked? 3-6

3.3.5.3 How does the DCA App configuration data get accessed? 3-7

3.3.5.4 What is the main part good for? 3-7

3.3.6 Render the Flow Control Chart 3-7

3.3.7 Test the DCA App Version 3-9

3.3.8 Promote the DCA App Version to Production 3-9

iii

4 DCA Application Lifecycle

5 Developing Statefull DCA Apps

6 A Statefull DCA App Using the UDR DB

6.1 The CountULR DCA App 6-1

6.2 Prerequisites 6-1

6.3 The Process 6-1

6.3.1 Configure the DCA App's Global Options and Behavior 6-2

6.3.2 Create New Development Application Version 6-2

6.3.3 Configure the UDR DBs 6-3

6.3.3.1 Configure UDR DB as Remote server 6-3

6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application 6-8

6.3.3.3 Audit Time Configuration on Active UDR NOAM 6-8

6.3.4 Define the Configuration Data Schema 6-9

6.3.5 Provision the Configuration Data 6-9

6.3.6 Provision the DCA App Business Logic 6-9

6.3.6.1 What does a “state” consist of? 6-12

6.3.6.2 What are Asynchronous API Calls and Callbacks? 6-13

6.3.6.3 How is the UDR state returned to the Perl script? 6-13

6.3.7 Render the Flow Control Chart 6-13

6.3.8 Test the DCA App Version 6-14

6.3.9 Promote the DCA App Version to Production 6-14

7 Monitoring a DCA App

8 A DCA App Using Custom MEALs

8.1 The Rate DCA App 8-1

8.2 Prerequisites 8-1

8.3 The Process 8-1

8.3.1 Differentiate a C-MEAL 8-2

8.3.2 Configure the DCA App's General Options and Behavior 8-2

8.3.3 Create New Development Application Version 8-2

8.3.4 Define the Configuration Data Schema 8-3

8.3.5 Provision the Configuration Data 8-3

8.3.6 Provision the DCA App Business Logic 8-3

8.3.7 Render the Flow Control Chart 8-4

iv

8.3.8 Test the DCA App Version 8-6

8.3.9 Promote the DCA App Version to Production 8-9

9 GUI Overview

9.1 NO/SO differences 9-1

9.2 NO Screens 9-1

9.2.1 Configuration Screen 9-2

9.2.2 Custom MEALs 9-2

9.2.2.1 View Custom MEALs 9-2

9.2.2.2 Configure the Counter Custom MEAL Template 9-3

9.2.2.3 Configure the Basic Custom MEAL Template 9-4

9.2.2.4 Configure the Rate Custom MEAL Template 9-4

9.2.2.5 Configure the Event Custom MEAL Template 9-5

9.2.3 General Options Screen 9-6

9.2.4 Trial MPs Assignment Screen 9-7

9.2.5 Application Control Screen 9-7

9.2.6 Create New Development Screen 9-8

9.2.7 Copy to New Development Screen 9-8

9.2.8 Export Pop-Up Window 9-9

9.2.9 Import Pop-Up Window 9-10

9.2.10 Development Environment 9-12

9.2.11 Tables Screen 9-12

9.2.12 Provision Tables Screen 9-15

9.3 SO Screens 9-17

9.3.1 Application Control Screen 9-17

9.3.2 Export Pop-Up Window 9-18

9.3.3 Import Pop-Up Window 9-18

9.3.4 Tables Screen 9-19

9.3.5 Provision Tables Screen 9-20

9.4 System Options 9-21

10

APIs

10.1 The EDL API 10-1

10.1.1 API to Manipulate the Diameter Header 10-1

10.1.2 API to Manipulate the Diameter AVPs 10-3

10.1.3 API to Manipulate the Diameter Grouped AVPs 10-9

10.2 Diameter Transaction Stateful APIs 10-10

10.2.1 Internal Variables 10-10

10.2.2 Diameter Transaction Context Variables 10-11

v

10.3 Read DCA App Configuration Data 10-12

10.4 Routing API 10-13

10.5 Debugging API 10-14

10.6 Custom MEAL API 10-16

10.6.1 Counter Template API 10-16

10.6.2 Rate Template 10-18

10.6.3 Basic Template 10-21

10.6.4 Event Template 10-24

10.7 UDR API 10-26

10.7.1 The Prototype of Queries and Query Results 10-26

10.7.1.1 Specifying the Query 10-26

10.7.1.2 Retrieving the Query Result 10-28

10.7.2 The UDR API Functions 10-29

vi

My Oracle Support

My Oracle Support (https://support.oracle.com) is your initial point of contact for all product
support and training needs. A representative at Customer Access Support can assist you with
My Oracle Support registration.

Call the Customer Access Support main number at 1-800-223-1711 (toll-free in the US), or
call the Oracle Support hotline for your local country from the list at http://www.oracle.com/us/
support/contact/index.html. When calling, make the selections in the sequence shown below
on the Support telephone menu:

1. Select 2 for New Service Request.

2. Select 3 for Hardware, Networking and Solaris Operating System Support.

3. Select one of the following options:

• For Technical issues such as creating a new Service Request (SR), select 1.

• For Non-technical issues such as registration or assistance with My Oracle Support,
select 2.

You are connected to a live agent who can assist you with My Oracle Support registration and
opening a support ticket.

My Oracle Support is available 24 hours a day, 7 days a week, 365 days a year.

7

https://support.oracle.com
http://www.oracle.com/us/support/contact/index.html
http://www.oracle.com/us/support/contact/index.html

What's New in This Guide

This section introduces the documentation updates for release 9.0.0.0.0.

Release 9.0.0.0.0 - F79674-01, April 2023

The following purposes are added in the API to Manipulate the Diameter AVPs section:

• Return the AVP map with all the AVP’s in the message.

• Return the AVP code of the AVP from the Diameter message.

• Return the vendor-id of the AVP from the Diameter message.

• Return if session-id is the first AVP, then it’s AVP code from the Diameter
message.

• Return count of specific AVP’s from the message.

8

1
Introduction

Diameter Custom Applications (DCA) is a framework that enables a significant reduction of
the coding – testing – deployment – maintenance cycle in the development of Diameter
applications. The present document is intended to developers of DCA Apps. A number of
additional chapters, interleaved with the chapters describing the three DCA Apps provide a
gradual insight into essential capabilities of the DCA framework, like the DCA App lifecycle
management, statefull DCA Apps development mechanisms, and tools for monitoring the
execution of DCA Apps.

1.1 References
• DCA Framework and Application Activation and Deactivation

• DCA Development Environment

• DSR Software Installation and Configuration Procedure

1.2 Acronyms and Terminologies
Table 1-1 Acronyms

Acronym Description

API Application Programming Interface

ART Application Routing Table

AVP Attribute Value Pair (in context of Diameter
protocol)

ComAgent Communication Agent

DA-MP Diameter Agent Message Processor

DAI DSR Application Infrastructure

DAL Diameter Application Layer

DBCA Database Change Agent

DCA Diameter Custom Applications (framework)

DRL Diameter Routing Layer

DSR Diameter Signaling Router

EDL Encode-Decode Library

UDR Unified Data Repository

JSON Java Script Object Notation

MEAL Measurement, Event and Alarm

MO Managed Object

NOAM Network Operations Administration and
Maintenance

OAM Operations, Administration & Maintenance

OID Object Identifier (SNMP)

1-1

Table 1-1 (Cont.) Acronyms

Acronym Description

Perl “Practical Extraction and Reporting Language” – a
scripting language

PRT Peer Routing Table

SNMP Simple Network Management Protocol

SOAM Site Operations Administration and Maintenance

TTR Trace Transaction Record (in context of IDIH)

Table 1-2 Terminologies

Acronym Description

A-Level NOAM –level

Asynchronous Call Symbol Symbol in the Development Environment that
represents a code statement that calls an
asynchronous function provided by the DCA
Perl API. The code statement occurs within a
preceding Execution Block. The symbol
displays the name of an asynchronous
function that is invoked.

B-Level SOAM- level

DCE Development Environment Web application where a custom Diameter
application developer can edit, save, check
syntax, compile the application code for a
Diameter Custom Application and generate an
Interactive Flow Control Chart from the
application code.

Execution Block Symbol Symbol in the Development Environment that
corresponds to an application subroutine
where the name of the symbol is also the
name of the subroutine.

Internal Variable A storage mechanism that allows persistence
during a Diameter transaction lifetime.

Start Symbol Symbol in the Development Environment that
marks the start of execution for the
application.

Termination Symbol Symbol in the Development Environment that
represents an end point of the application
execution.

Chapter 1
Acronyms and Terminologies

1-2

2
DCA Activation and Deactivation

Activation and deactivation are standard procedures that enable DSR applications in general
and DCA Apps in particular to be “installed” and “uninstalled” on a network.

2.1 DCA Activation
In order to start developing a new DCA application, the following procedure must be
performed:

1. Activation of the DCA framework on the NO is described in DCA Framework and
Application Activation and Deactivation. This step needs to be performed only once for a
given network.

2. Activation of the new DCA application on the NO is described in DCA Framework and
Application Activation and Deactivation. This step must be performed once per DCA
application (similar to native DSR applications).

Note:

Only a limited number of DCA applications (currently five) can be
simultaneously activated. Therefore, old DCA applications may need to be
deactivated for new DCA applications.

Figure 2-1 DCA Activation- Deactivation Lifecycle

2-1

2.1.1 DCA Framework Activation
When the DCA framework is initialized, the DCA Framework folder with the
Configuration file becomes visible in the left side menu.

Figure 2-2 DCA Framework Menu

All the measurements and KPIs associated with the DCA Framework become visible
as well.

Figure 2-3 DCA Measurements

Chapter 2
DCA Activation

2-2

Figure 2-4 DCA KPIs

2.1.2 DCA App Activation
When the new DCA App is activated, the DCA App subfolder with the name provided by the
user during the activation procedure becomes visible in the left side menu. The DCA App
subfolder includes the screens for enabling the business logic and provisioning configuration
data. The DCA App becomes visible across DSR (ART, maintenance screen, etc.).

Figure 2-5 DCA Application Menu

Chapter 2
DCA Activation

2-3

2.1.3 Post-Activation DCA App State
Following the activation procedure, the DCA App is in the disabled state. While in
disabled state, Diameter traffic will not be delivered to the DCA App. First, the DCA
App must be enabled from the SO Main Menu. navigate to Diameter, select
Maintenance and click on Applications. Note that on this screen the DCA App is
identified by the "short name" configured by the user during the DCA App activation
procedure.

Independently from the enabled/disabled state of the DCA App, at this stage no
version of the DCA App has been provisioned yet. As a result, there is no version in
“Production” and “Trial” state. As long as no “Production” or “Trial” version is available
for a DA-MP to run, the DCA App‘s operational status will be “unavailable”(see Main
Menu: Diameter, Maintenance, and select Applications, on the Signaling OAM
(SO)).

The behavior of a DCA App while in operational state “unavailable” (provided that the
DCA App has been enabled) is configurable on the SO from the Main Menu:DCA
Framework, navigate to <DCA App Name> and then select System Options (see
System Options); possible options are dropping the Diameter request, forwarding the
Diameter request or returning a Diameter answer with a configurable error code.

2.2 DCA Deactivation
The deactivation procedures enable a DCA App and respectively the DCA framework
to be removed from a given network.

2.2.1 DCA Application De-Activation
The deactivation of a DCA App will not be allowed as long as versions of the
respective DCA App are still in “Production” and/or a “Trial” state (see DCA Application
Lifecycle).

Following deactivation, the DCA app‘s GUI folder under „DCA Framework“ menu item
will disappear. The DCA App will be deregistered from the ART, its KPIs and
measurements will not be displayed and respectively reported any longer.

2.2.2 DCA Framework De-Activation
DCA framework deactivation will not be allowed as long as at least one DCA App is
activated in the network.

Following deactivation, the DCA framework GUI folder will disappear from the left-
hand GUI menu.

Chapter 2
DCA Deactivation

2-4

3
DCA App Provisioning

This section is a learning by doing guide to provisioning the configuration data and business
logic for a simple DCA App.

3.1 The Blacklist DCA App
The Blacklist DCA App checks the Origin-Host AVP of incoming Diameter requests and
verifies whether it is blacklisted or not. In case the Origin-Host is blacklisted, the Diameter
request will be dropped, otherwise the Diameter request will be forwarded unchanged.

3.2 Prerequisites
The DCA Framework must have been previously activated as described in DCA Framework
and Application Activation and Deactivation. Also, a DCA App with the name “Blacklist” shall
be activated as described in DCA Framework Activation and DCA Framework De-Activation.

The Blacklist DCA App has to be enabled on all the DA-MPs in the network from the SO Main
Menu. Navigate to Diameter, click Maintenance and select Applications.

An ART rule shall be added that enables Diameter messages to be delivered to the Blacklist
DCA App.

3.3 DCA App Provisioning Process
The following step must be followed in order to provision the Blacklist DCA App:

1. Configure the DCA App's General Options and Behavior

2. Create New Development Application Version

3. Define the configuration data structure

4. Provision the Configuration Data

5. Provision the Business Logic

6. Render the Flow Control Chart

7. Test the DCA App Version

8. Promote the DCA App Version to Production

3.3.1 Configure the DCA App's General Options and Behavior
At this stage there is no version available for the Blacklist DCA App. As a result, the DCA App
will be in the operational state “Unavailable”. No traffic is forwarded to the “Blacklist” DCA
App and for outside observers the DCA App behaves as specified in the SO screen Main
Menu. From the main menu, click DCA Framework, select <DCA App Name> and select
System Options. For more information see System Options.

3-1

The Run-time error configuration section of the same screen defines the behavior of
the DCA App in case a runtime error occurs during the execution of the event
handlers.

Finally, the DCA App programmer must ensure that the names specified on the NO
screen Main Menu. From the main menu, click DCA Framework, select <DCA App
Name> and select General Options. See General Options Screen for the Diameter
request and answer event handlers (Perl subroutines) are consistently used in the Perl
script. For Blacklist in particular, Perl Subroutine for Diameter Answer shall be left
empty because there is no event handler defined to process the Diameter answers.

3.3.2 Create New Development Application Version
Navigate to the Main Menu: DCA Framework, select the <DCA App Name>, click
Application Control screen on the NO and click “Create New Development”. The
“Create New Development” screen will be displayed. Specify a name for the newly
created “Blacklist” version and optionally provide comments (for example, author
name, brief description of the business logic, etc.).

Figure 3-1 Create a New Application Version

Figure 3-2 New Application Version Created

Chapter 3
DCA App Provisioning Process

3-2

3.3.3 Define the configuration data structure
Select the newly created development application version on theApplication Control screen
and click Config Tables and Data. The Tables screen will open. Click the Insert on the
Tables screen and create a new configuration table for provisioning the blocklist. The
Blacklist DCA App configuration table contains only one field: OriginHost, which is of type
Diameter Identity.

Figure 3-3 Create a New Database

Note:

In this example the configuration table is defined at the NO level. That means the
configuration table will be replicated to all the DA-MPs in the network.

Alternatively, a configuration table may be defined at the SO level. That means, while its
structure is defined across the entire NO, its content will be replicated only to the DA-MPs in
each individual SO. In this way distinct SOs may use different configuration data. See
Provision Tables Screen.

3.3.4 Provision the Configuration Data
Once the structure of the “Blacklist” table is defined, the table will show up in the Tables
screen. Select it and click Provision Table. The Provision Table View screen will open. Click
the Insert on the Provision Table View screen and insert all the blacklisted Origin-Hosts to the
table one by one.

Chapter 3
DCA App Provisioning Process

3-3

Figure 3-4 Provision Table BlackList

Figure 3-5 Insert a new data row to the BlackList table

Figure 3-6 Provision DCA DB Tables

Chapter 3
DCA App Provisioning Process

3-4

3.3.5 Provision the Business Logic
Go back to the “Application Control” screen, select the application version and click the
“Development Environment” button.

In the development environment the user can edit, save, check syntax and compile the DCA
App's Perl code, which defines the business logic that the DCA App implements. Additionally,
an interactive Flow Control Chart is rendered based the DCA App's Perl script. The Flow
Control Chart provides an overview of the control flow within the DCA App and is particularly
useful in following the asynchronous calls and indicating the terminating actions (forward,
drop or return answer).

See Development Environment for more details on Development Environment.

The development environment of the “Blacklist” DCA App is illustrated in the following image.

Figure 3-7 The Blacklist DCA App Development Environment

First, the DCA App programmer has to write in the right-hand panel the Perl code as shown
below. The left-hand panel containing the flowchart will be empty until the flowchart will be
rendered in Render the Flow Control Chart.

sub process_request {
 my $param = shift;
my $msg = diameter::Param::message($param) ;
die "Missing Diameter message" unless defined ($msg);
my $originHost = diameter::Message::getAvpValue($msg, "Origin-Host");
die "Missing Origin-Host" unless defined($originHost);
if (isBlacklisted ($originHost)) {
dca::action::drop();
} else {
dca::action::forward();
}
}
sub isBlacklisted {
my $originHost = shift;
my $blacklist = $dca::appConfig{"BlackList"};
my $i = 0;
while ($i <= $#{$blacklist}) {

Chapter 3
DCA App Provisioning Process

3-5

return 1 if $blacklist->[$i]{"OriginHost"} eq $originHost;
$i++;
}
return 0;
}

This Perl script makes use of the getAvpValue function to read the value of an AVP.
The getAvpValue function is part of the EDL API, which is described in API to
Manipulate the Diameter AVPs. It also uses the drop and forward functions to discard
and respectively forward the Diameter request. The drop function is part of the basic
routing API, which is described in Routing API.

3.3.5.1 Where is the Perl script being executed?
First, let’s eliminate any possible confusion: even though the Perl script is edited via
the NO GUI, the Perl script is replicated to and eventually executed on the DA-MPs.
There is no possibility to make the Perl script process traffic other than running it on
the DA-MPs.

3.3.5.2 How do the Event Handlers get invoked?
Let’s observe that the business logic of a DCA App consists of a collection of event
handlers, which are invoked when a Diameter message is delivered to the respective
DCA App. A DCA App may therefore define one event handler for Diameter requests
and one event handler for Diameter answers. Subsequent sections will introduce
another category of event handlers, related to asynchronous database queries, but
let’s stick to the “Blacklist” DCA App for now. “Blacklist” defines only one event
handler: process_request. Unlike isBlacklisted, which is a standard Perl subroutine
invoked from process_request, process_request itself is not explicitly invoked from
anywhere in the Perl script. The event handlers are explicitly invoked by the Perl
running environment of the DCA framework. Their names are configured from the NO
Main Menu, navigate to DCA Framework, select Application Name, and click
General Options screen and by default these names are process_request and
process_answer. These names may be changed, but one needs to make sure that the
configured event handler names are consistent with the names used in the Perl script.
Also, the event handler names shall be left empty if there is no corresponding event
handler defined in the Perl script.

Figure 3-8 Event Handler Subroutine Name Configuration

Chapter 3
DCA App Provisioning Process

3-6

3.3.5.3 How does the DCA App configuration data get accessed?
The configuration data of a DCA App is accessible to the Perl script through
the $dca::appConfig variable, which is a complex variable representing a hash of arrays of
hashes. One has to dereference it with exactly the same table names and field names
specified when the structure of the configuration tables has been defined in Define the
configuration data structure

GUID-E289AF32-D398-4047-9C2B-4EB32DF2DAC9

in our case:

$dca::appConfig{“BlackList”}->[<record_number>]{“OriginHost”}

3.3.5.4 What is the main part good for?
“Blacklist” has an empty “main part”. The “main part” of a Perl script is where the Perl
interpreter starts executing instructions. In DCA the main part is executed only once
following the successfully compilation of the script.

The “main part” is typically used to perform whatever initializations are necessary (like for
instance Custom MEAL objects, as we will describe later on).

Another task that fits into the “main part” is DCA App configuration data post-processing. We
have seen in How does the DCA App configuration data get accessed? section that the
“Blacklist” configuration data is accessible to the business logic (Perl script) as an array.
“Blacklist” simply loops through the array when looking for each Origin-Host, but a more
performance–aware version would certainly convert the array into a more performant data
structure, like for instance a hash table keyed by the Origin-Host values.

Other DCA apps may even need to use multiple keys (hence multiple hash tables) or
compound keys; the “main part” is the right place to perform this kind of structural
optimizations on the DCA App configuration data.

3.3.6 Render the Flow Control Chart
After editing the script, while in the Development state, the following actions are possible:

• Render Chart (to generate the flowchart from the Perl code);

• Render Code (to generate a Perl code skeleton from the flowchart);

• Save (to save the Perl code and the flowchart);

• Check Syntax (to check syntax of Perl script).

Chapter 3
DCA App Provisioning Process

3-7

Figure 3-9 Development Environment Buttons

The "Render Chart" action generates a flowchart based on the Perl code. Note that the
flowchart has a Perl subroutinegranularity and not a Perl instruction granularity. The
flowchart's main purposes are: (i) to describe how the callback subroutines are linked
to the event handlers (Diameter message handlers or other callback subroutines) that
registers them and (ii) to indicate the terminating actions (drop, forward or return
answer).

The flowchart will not illustrate on which condition a Perl subroutine is invoked (i.e. if
conditions) or how many times a Perl subroutine is invoked (i.e. loop conditions). Also,
the "Render Chart" action shall be explicitly triggered by clicking the corresponding
button after each modification of the Perl script.

The approach pursued by this ("Blacklist") and subsequent DCA App examples in this
document ("CountULR" and "Rate") is based on the idea that a DCA App programmer
will first provision the Perl code and then render the flowchart. The "Render Code"
action allows a somewhat opposite approach, by first drawing a flowchart and then
generating a Perl script skeleton based on it.

The “Save” button allows the flowchart and Perl code to be saved, while the DCA App
version is in Development or Trial state.

The “Check Syntax” button becomes enabled once the "Save" action has been
completed, while the DCA App version is in Development or Trial state. It performs a
syntax check on the Perl code and displays the errors if the syntax check fails.

Chapter 3
DCA App Provisioning Process

3-8

3.3.7 Test the DCA App Version
Having the configuration data and business logic provisioned, it is now time to test the
“Blacklist” DCA App.

A DCA App version is tested by promoting it to the Trial state, which will automatically result
in running it on the dedicated Trial DA-MPs.

The first step is therefore to configure the Trial DA-MPs, which can be done from the “Trial
MPs Assignment” screen.

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be repeated
for each DCA App version.

Note also that our network contains only one DA-MP, which will be also a Trial DA-MP.
However, in a real life deployment there would typically be a few Trial DA-MPs and a number
of non-Trial DA-MPs.

Figure 3-10 Trial MP Assignment

Next, on the “Application Control” screen, promote the DCA App version from Development
to Trial state by selecting it and clicking on the “Make Trial” button.

While in Trial state the DCA App version can be: modified, saved, have the syntax checked
and, in addition to the Development state, it can also be compiled (by clicking the "Compile"
button, see Figure 3-9), as further described in DCA Application Lifecycle. During each new
cycle starting with the first Perl code modification and lasting until the next successful
compilation (with an arbitrarily number of modifications, save and syntax check actions taking
place during this time), the Trial DA-MPs will run the previously successfully compiled Perl
script of the respective DCA App version.

If successfully compiled, the “Blacklist” DCA App on the Trial DA-MP will switch into the
operational state Available (see the Applications screen). On the non-Trial DA-MPs the DCA
App operational state will remain Unavailable because there is no DCA App version in
Production state at this moment.

3.3.8 Promote the DCA App Version to Production
A successfully compiled Trial DCA App version can be promoted to the Production state. For
this purpose, on the “Application Control” screen, the DCA App version shall be selected and
the “Make Production” button clicked.

Chapter 3
DCA App Provisioning Process

3-9

At this stage the only DCA App version available so far is in Production state. All non-
Trial DA-MPs will start running it and on these DA-MPs the DCA App operational state
will become Available. Because there is no DCA App version in the Trial state, the Trial
DA-MPs will run the Production version as well.

Please note that our network is a very particular case that contains one single DA-MP,
which is configured as a Trial DA-MP. This means that the Production version will run
on this DA-MP if and only if no Trial version exists. As soon as a (new) Development
version will be promoted to the Trial state, the Trial DA-MP will stop running the
Production version and will start executing the (new) Trial version.

While in Production state, the business logic of the DCA App version cannot be
changed anymore. It’s only the configuration data that can be updated.

We have achieved our initial objective of running the “Blacklist” DCA App in our
network. From this point on a number of alternatives are possible:

• Demote the DCA App version from Production state back to Development to fix
bugs, re- test and promote back to Production state.

• Copy the DCA App version into a new version with the purpose to improve its
business logic (in terms of efficiency, functionality or both) and eventually promote
the newer version to Production state.

• Export the DCA App version from the current network and import it onto another
network.

Chapter 3
DCA App Provisioning Process

3-10

4
DCA Application Lifecycle

The DCA Application Lifecycle enables the DCA App programmer to manage the lifecycle of
a DCA App.

So far we have developed one single DCA App version, we tested it and promoted to the
Production state. The state transitions are illustrated in the following image.

Figure 4-1 Transitions from Development to Production State

In a real life deployment a DCA App may need to be continuously enhanced both in terms of
efficiency as well as features. A typical approach would be to “clone” the DCA App version
currently in Production state to a new version in Development state, work on the new version
(while the old version is processing the Diameter traffic), test the new version and eventually
replace the older version in Production state with the newer one. This process is illustrated by
the transition path 7 to 3 to 5b to 9 in the following image.

4-1

Figure 4-2 Creating a New DCA App Version

The DCA App Lifecycle management is done through the Application Control
screen.

Each DCA app version can be in one of the following states:

• Development (initial state)

– There are zero or more Development versions in the system.

– Development version is not executed on any MP.

– Configuration schema (databases), configuration data, flowchart may be
updated.

– A new version in Development state is created in the system when:

* A “Create New Development” button is clicked, see Application Control
Screen. In this case, the version will have an empty flowchart, empty
configuration schema and empty configuration data.

* Importing the business logic (w/ or w/o configuration data), see Import
Pop-Up Window. In this case the flowchart and the configuration schema
(databases) will be copied from the imported version. Optionally,
configuration data may be imported along with the business logic as well.

* Copying a new Development version from an existing version in the
system, see Copy to New Development Screen. In this case the business
logic as well as the configuration data of the selected version will be
copied into the new version.

• Trial

– There are zero or one Trial versions in the system.

– Trial version is executed on the DA-MPs assigned to run the Trial version

– If no Trial version exists, then the Trial MPs will run the Production version
(see Figure 4-3).

– Configuration schema (databases), configuration data, flowchart may be
updated.

Chapter 4

4-2

• Production

– There are zero or one Production version in the system.

– When no Production version exists in the system, the operational state of the DCA
application on MPs supposed to run the Production version will be set to
“unavailable”. This may happen if the Production version is rolled back to the
Development state or deleted.

– Is executed:

* On all the DA-MPs, if no Trial version exists, or

* On all the DA-MPs except the DA-MPs assigned to run the Trial version, if a Trial
version exists (see Figure 4-3).

– Configuration schema (databases) & Flowchart are read-only.

– Configuration data may be updated.

• Archived

– There are zero or more Archived versions in the system.

– Archived versions are the application versions that have previously been in the
Production state. They serve as backups for the purpose of bringing the system back
to a previous known state with minimum service interruption.

– Archived version is not executed on any MP.

Configuration schema (databases), Configuration Data and Flowchart are read-only, but can
be exported and copied into a new version.

Figure 4-3 Assignment of the Version to a DA-MP

The following transitions are possible for a given DCA App version:

• Development to Trial (only if syntax was successfully checked and no other version is in
Trial state)

Chapter 4

4-3

• Trial to Production (only if the code/flow control chart was successfully compiled
and no other version is in Production state)

• Production to Archived (automatic transition when a new version is promoted to
Production)

• Trial to Development

• Production to Development (the operational state of the DCA App becomes
Unavailable)

• Archived to Development

• Archived to Trial

• Archived to Production

Chapter 4

4-4

5
Developing Statefull DCA Apps

The “Blacklist” DCA App was a stateless Diameter application because it was processing
each Diameter message individually without maintaining any state between a Diameter
request and its corresponding answer (Diameter transaction state) or across Diameter
transactions (for example, Diameter session state) or across Diameter sessions (for example,
user state).

DCA Apps may however need to store state:

• Diameter transaction state – for instance collect some information from the Diameter
request and use that information when processing the Diameter answer. This task can be
addressed in two ways:

1. Using the Diameter transaction context variables API documented in Diameter
Transaction Context Variables.

2. Developers familiar with the Internal Variables from the Mediation feature may use
Internal Variables for this purpose, as described in Internal Variables. However,
Internal Variables involve a configuration overhead and therefore unless there is a
strong argument in favor of using them (Example, they need to be set or read from
Mediation rules) the Diameter transaction context variables, being a purely
programming interface, are preferable

• Diameter session or user state – for instance collect information across multiple Diameter
transactions in the same session or user information across multiple Diameter sessions.
This task can be addressed using the Universal Session Binding Repository (UDR) and is
described in UDR API.

5-1

6
A Statefull DCA App Using the UDR DB

This chapter describes the additional configuration steps that need to be performed and
introduces the API available to develop a statefull DCA App that uses the UDR (Unified Data
Repository). The UDR provides a generic interface to the DSR, which implements a scalable,
distributed and persistent database infrastructure, which DCA Apps as well as other Oracle
applications may use.

6.1 The CountULR DCA App
The “CountULR” DCA App maintains a per-user count of ULR messages and deletes it when
a CLR message from the respective user is received. The user is identified based on the
content of the User-Name AVP in the incoming Diameter requests.

6.2 Prerequisites
The DCA Framework must have been previously activated as described in DCA Framework
and Application Activation and Deactivation document. Also, a DCA App with the name
“CountULR” shall be activated.

The “CountULR” DCA App has to be enabled on all the DA-MPs in the network from the SO
Main Menu: Diameter, select Maintenance, and click Applications.

An ART rule shall be added that enables ULR and CLR Diameter requests to be delivered to
the “CountULR” DCA App.

6.3 The Process
The following steps must be followed in order to provision the “CountULR” DCA App:

Business Logic and Configuration Data
Provisioning

UDR DB Configuration

Step 1: Configure the DCA App's Global Options
and Behavior

Step 2: Create New Development Application
Version

Step A: Configure the UDR DBs

Step 3: Define the Configuration Data Schema

Step 4: Provision the Configuration Data

Step 5: Provision the DCA App Business Logic

Step 6: Render the Flow Control Chart

Step 7: Test the DCA App Version

Step 8: Promote the DCA App Version to Production

6-1

6.3.1 Configure the DCA App's Global Options and Behavior
In addition to the considerations discussed in section 3.3.1, for DCA Apps that use
UDR, the following configuration options may need to be adjusted:

• On the NO screen Main Menu: DCA Framework, select the <DCA App Name>,
and click General Options (see section General Options Screen):

– "Read-Only UDR Access as Guest", which may be used to control the access
of the DCA App to UDR DBs owned by other DCA Apps. This option is not
relevant to "CountULR" because "CountULR" will exclusively use the UDR DB
owned by itself.

It is recommended the state data size (consisting of the size of the lookup key and
respectively the size of the state data itself) of any new DCA App to be kept below the
default values configured on the Configuration screen (see section Configuration
Screen). If, for good reasons, a DCA App requires a larger lookup key or more data to
store, then these limits shall be increased.

Note that these limits apply globally to all active DCA Apps. As a result, decreasing
these value may result in existing DCA Apps having their UDR queries rejected with a
dca::udr::ResultCode::MaxStateSize error, and is therefore not recommended.

6.3.2 Create New Development Application Version
Navigate to the Main Menu: DCA Framework, select the <DCA App Name>, click
Application Control screen on the NO and click “Create New Development”. The
“Create New Development” screen will be displayed. Specify a name for the newly
created “Blacklist” version and optionally provide comments (for example, author
name, brief description of the business logic, etc.).

Figure 6-1 Create a New Application Version

Chapter 6
The Process

6-2

Figure 6-2 New Application Version Created

6.3.3 Configure the UDR DBs

6.3.3.1 Configure UDR DB as Remote server
Comagent Configuration with UDR DB will be NOAM Level Configuration.

6.3.3.1.1 ComAgent Configuration on DSR
For Comagent configuration go to Communication agent TAB on Active DSR NO GUI and
configure UDB DB Server IMI IP as remote server.

Note:

If DSR and UDR deployment are in same network use UDR IMI IP as Comagent
Remote Server Configuration.

If DSR and UDR deployment are in different network use UDR XSI IP as Comagent
Remote Server configuration.

For this, add new XSI Interface on both DSR and UDR side for Comagent
Communication. Make sure new added XSI interface are Desktop routable and
accessible from both side.

Do not use DSR signaling Interface (XSI Interface) for comagent communication.

• – Remote Server Configuration : Configure UDR DB as Remote Server.

Chapter 6
The Process

6-3

Figure 6-3 Remote Server Configuration on DSR NO Server

• Connection Group configuration: Add previously configured Remote Server to
STPSvcGroup Connection Group.

Figure 6-4 Connection group Configuration on DSR NO Server

Note:

This "STPSvcGroup" Routed service is common for DCA and vSTP
Application.

Note:

Restart the MPs Server to make the Comagent service /connection up

• Restart the MPs Server: Navigate to Active DSR NOAM status & Manage section,
select the MP server and restart the MP server with click Restart.

Chapter 6
The Process

6-4

Figure 6-5 Active NOAM Status and Manage screen

6.3.3.1.2 Comagent Configuration on UDR
For Comagent configuration go to Communication agent TAB on UDR NO GUI and configure
all the DSR MP IMI IP as client.

• Remote Server Configuration:Configure DSR MPs IMI IP as Client.

Figure 6-6 Remote Server Configuration

Note:

Reboot the Active UDR NOAM Server to make the Comagent service /
connection up.

• Restart the MPs Server: Navigate to Active UDR NOAM status & Manage section, select
the Active NOAM server and Reboot the Active NOAM server with click Reboot.

Chapter 6
The Process

6-5

Figure 6-7 Restart the MPs Server

6.3.3.1.3 Comagent Connection Status Validation
• Comagent Connection status check on DSR NO Server: For Connection, status

check go to Communication agent Maintenance TAB on DSR NO GUI.

Figure 6-8 Comagent Connection status check on DSR NO Server

• Routed Service status check on DSR NO Server: For routed service, status check
go to Communication agent Maintenance TAB on DSR NO GUI.

Figure 6-9 Routed Service status on DSR NOAM Server

Chapter 6
The Process

6-6

• HA Service status check on DSR NO Server: For HA Service status check go to
Communication agent Maintenance TAB on DSR NO GUI.

Figure 6-10 HA Service status check on DSR NO Server

• Comagent Connection status check on UDR NO Server: For Connection, status check go
to Communication agent Maintenance TAB on UDR NO GUI.

Figure 6-11 Comagent Connection status check on UDR NO Server

• Routed Service status check on UDR NO Server: For routed service, status check go to
Communication agent Maintenance TAB on UDR NO GUI.

Figure 6-12 Routed Service Status check on UDR NO Server

Chapter 6
The Process

6-7

• HA Service status check on UDR NO Server: For HA Service status check go to
Communication agent Maintenance TAB on UDR NO GUI.

Figure 6-13 HA Service status check on UDR NO Server

6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application
Login to Active NOAM Server through putty session and run this loader
(enableSecurityApp) with following steps:

1. Go to this path /usr/TKLC/udr/prod/maint/loaders/upgrade
2. Run the enableSecurityApp script

3. Reboot both the UDR NOAM server.

6.3.3.3 Audit Time Configuration on Active UDR NOAM
By Default this configuration will disable (unchecked) e.g. no record will be clean up on
UDR server.

• if you want to clean old record on UDR ,we need to configure as

• “Cleanup Inactive Security App Subscriber Enabled” is checked (enable) and
“Security App SDO Audit Interval” is set value as “10” => all records will be cleared
after 10 sec.

Figure 6-14 Configuration of Audit Time on UDR

Chapter 6
The Process

6-8

6.3.4 Define the Configuration Data Schema
“CountULR” does not use any DCA App configuration data.

6.3.5 Provision the Configuration Data
“CountULR” does not use any DCA App configuration data.

6.3.6 Provision the DCA App Business Logic
The “CountULR” DCA App implements the following business logic:

• When receiving a ULR message, extract the user name from the User-Name AVP and
check if a state has been created for the respective user:

– If the user name is not found, create a state data.

– If the user name already exists, read the existing state.

• When receiving a CLR message, extract the user name from the User-Name AVP and
delete the state corresponding to the respective user, if it exists.

The following image illustrates a typical call flow. “CountULR” uses two UDR API calls:
createOrRead, BulkDelete . The UDR API is described in UDR API.

Figure 6-15 “CountULR” Call Flow

The Perl code is illustrated as follows:

use constant{
 # key types for our app – only NAI is currently used,

Chapter 6
The Process

6-9

 # the others are for exemplification
 IMSI => 0,
 SESSION => 1,
 NAI => 2,
 IPv4 => 3,
 # command codes for S6 commands
 ULR_CMD => 316,
 CLR_CMD => 317,
};

this function is called when receiving a diameter request
message
sub process_request{
 # session state to be stored on the udr
 # the session state stores:
 # - no of requests for this user-name
 # - no of success replies for this user-name
 # - no of error replies for this user-name
 my $udr_state =
 {
 requests => 1 # only requests are currently counted
 #ok_replies => 0,
 #err_replies => 0
 };

 # diameter message is the first parameter
 my $param = shift;
 # only one key type for this app: NAI
 my $key_type = NAI;

 # get the diameter message object
 my $msg = diameter::Param::message($param);
 if(!defined($msg)){
 die "Bad diameter message parameter.";
 }

 # try to get the the diameter command code from the diameter
message
 my $cmd = diameter::Message::commandCode($msg);
 if(!defined($cmd)){
 die "No command code in diameter message.";
 }

 # get User-Name from the message
 my $user = diameter::Message::getAvpValue($msg,"User-Name");
 if(!defined($user)){
 # could not create $user
 die "Could not get the User-Name value from the message"
 }
 my $xmlData = create_xml_State_data(%udr_state);
 if(ULR_CMD == $cmd){
 # process Update-Location-Request
 # Instantiate and send the "CreateOrRead" UDR stack event
 my $result = dca::udr::udrInstance("GLOBAL_UDR")->createOrRead(
 IMSI_KEY_TYPE,

Chapter 6
The Process

6-10

 dca::udr::KeyDataType::STRING, $imsi,
 dca::udr::StateDataType::STRING, $xmlData,
 "createOrReadCb");
 # check the "synchronous" error
 if(!defined($result)){
 # could not create the udr request
 die "could not create the UDR request";
 }
 }
 elsif(CLR_CMD == $cmd){
 # process Cancel-Location-Request
 # instantiate and send the "Delete" UDR stack event
my $result = dca::udr::udrInstance("GLOBAL_UDR ")->
bulkDelete(IMSI_KEY_TYPE,
 \@userIds ,
 "deleteCb");
 # check the "synchronous" error
 if(!defined($result)){
 # could not create request
 die "could not create the UDR request";
 }
 }
 else{
 die "unknown diameter command received";
 }
}

this function is called when receiving a diameter answer
message
sub process_answer{

}

this function is called when receiving an DeleteStateResult
answer from the UDR
sub deleteCb{
 my $udr_code = dca::udr::result()->code();

 if(!defined($udr_code)){
 # could not get the result code of the UDR answer
 die "did not get the result code of UDR answer";
 }

 if(dca::udr::ResultCode:: SubscriberNotFound== $udr_code){
 die "could not find a record with the given key on the UDR";
 }
 elsif(dca::udr::ResultCode::Success != $udr_code){
 die "UDR error: $udr_code";
 }
}

this function is called when receiving an CreateOrReadStateResult
answer from the UDR
sub createOrReadCb
{

Chapter 6
The Process

6-11

 my $udr_code = dca::udr::result()->code();
 my $udr_state = dca::udr::result()->data();

 # diameter message is the first parameter
 my $param = shift;
 # only one key type for this app: NAI
 my $key_type = NAI;

 # get the diameter message object
 my $msg = diameter::Param::message($param);

 if(!defined($msg)){
 die "Bad diameter message parameter.";
 }

 # get User-Name from the message
 my $user = diameter::Message::getAvpValue($msg,"User-Name");
 if(!defined($user)){
 # could not create $user
 die "Could not get the User-Name value from the message"
 }

 if(!defined($udr_code)){
 # Raise critical alarm ExecutionFailed with error details,
Mark a message as not vulnerable
 raise_alarm($cmType, REQUEST_MSG, dca::meal::Major,
&UDR_INVALID_RESULT,$transData->[IMSI]);
perform_error_action($cmType, UDR_QUERY_ERROR, $transData-
>[CMD_CODE]);
 }

 if(!defined($udr_state)){
 # could not get the udr state
 die "did not get the udr state in the UDR answer";
 }

 exec_nxt_CM_for_req_and_exit($msg, ++$priority, $transData);
}

6.3.6.1 What does a “state” consist of?
A state is essentially a mapping between a Key and a Value. What exactly the Key and
Value are is completely under the DCA App’s control. The UDR does not attach any
semantics to a DCA App state. In “CountULR” the Key is the user name extracted from
the User-Name AVP and the Value is basically a counter that counts the total number
of ULR messages.

Even though “CountULR” uses a single Key (of type NAI), DCA Apps may, in general,
use multiple Keys (IMSI, MSISDN, IP addresses, Diameter Session-Id, etc.).

A DCA App may distinguish between the different Keys by declaring their Key Types.
The Key Type helps avoid collisions like for instance between NAI key “fred” and IPv4
address key 66.72.65.64, or between IP source address key 1.2.3.4 and destination IP
address key 1.2.3.4.

Chapter 6
The Process

6-12

The Value associated to a Key is the value of a Perl variable. For “CountULR” the Value is a
Perl hash table containing one key “requests” that stores an integer representing the ULR
counter. Perl complex data structures like hash tables and arrays are converted to JSON and
stored in the UDR DB as strings. When retrieved from the UDR they are converted back to
the original data structure. Scalar Perl variables, on the other hand, need not undergo a
JSON conversion.

6.3.6.2 What are Asynchronous API Calls and Callbacks?
The dca::udr::udrInstance(“GLOBAL_UDR”) is createOrRead,
dca::udr::udrInstance(“GLOBAL_UDR ”) is update and
dca::udr::udrInstance(“GLOBAL_UDR ”) is bulkDelete API functions initiate, each of them,
an UDR query. They are asynchronous functions, in the sense that they do not wait until a
response from the UDR is received. They construct the UDR DB query and return
immediately, to allow the other Diameter messages to be processed. The query itself is sent
after the event handler execution completes.

How can then the DCA App learn about the outcome of the UDR DB query it just sent? It may
be observed that all the UDR API functions can register, as the last parameter, the name of a
callback subroutine. The callback subroutine is invoked by the DCA framework when the
outcome of the corresponding UDR query is known. The outcome may be: (i) an error
condition that prevented the UDR query to even be sent, (ii) the UDR DB response itself or
(iii) an error condition indicating that no response has been received within a certain timeout
interval.

6.3.6.3 How is the UDR state returned to the Perl script?
In the callback subroutine the DCA App programmer can use the dca::udr::result() class
to retrieve the error code and, if the query was successful, the result.

6.3.7 Render the Flow Control Chart
Render the Flow Control Chart based on the Perl script. Save the code and check the syntax.

Figure 6-16 Flow Control Chart

Chapter 6
The Process

6-13

6.3.8 Test the DCA App Version
Having the configuration data and business logic provisioned, it is now time to test the
“Blacklist” DCA App.

A DCA App version is tested by promoting it to the Trial state, which will automatically
result in running it on the dedicated Trial DA-MPs.

The first step is therefore to configure the Trial DA-MPs, which can be done from the
“Trial MPs Assignment” screen.

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be
repeated for each DCA App version.

Note also that our network contains only one DA-MP, which will be also a Trial DA-MP.
However, in a real life deployment there would typically be a few Trial DA-MPs and a
number of non-Trial DA-MPs.

Figure 6-17 Trial MP Assignment

Next, on the “Application Control” screen, promote the DCA App version from
Development to Trial state by selecting it and clicking on the “Make Trial” button.

While in Trial state the DCA App version can be: modified, saved, have the syntax
checked and, in addition to the Development state, it can also be compiled (by clicking
the "Compile" button, see Figure 3-9), as further described in DCA Application
Lifecycle. During each new cycle starting with the first Perl code modification and
lasting until the next successful compilation (with an arbitrarily number of
modifications, save and syntax check actions taking place during this time), the Trial
DA-MPs will run the previously successfully compiled Perl script of the respective DCA
App version.

If successfully compiled, the “Blacklist” DCA App on the Trial DA-MP will switch into
the operational state Available (see the Applications screen). On the non-Trial DA-
MPs the DCA App operational state will remain Unavailable because there is no DCA
App version in Production state at this moment.

6.3.9 Promote the DCA App Version to Production
A successfully compiled Trial DCA App version can be promoted to the Production
state. For this purpose, on the “Application Control” screen, the DCA App version shall
be selected and the “Make Production” button clicked.

Chapter 6
The Process

6-14

At this stage the only DCA App version available so far is in Production state. All non-Trial
DA-MPs will start running it and on these DA-MPs the DCA App operational state will become
Available. Because there is no DCA App version in the Trial state, the Trial DA-MPs will run
the Production version as well.

Please note that our network is a very particular case that contains one single DA-MP, which
is configured as a Trial DA-MP. This means that the Production version will run on this DA-
MP if and only if no Trial version exists. As soon as a (new) Development version will be
promoted to the Trial state, the Trial DA-MP will stop running the Production version and will
start executing the (new) Trial version.

While in Production state, the business logic of the DCA App version cannot be changed
anymore. It’s only the configuration data that can be updated.

We have achieved our initial objective of running the “Blacklist” DCA App in our network.
From this point on a number of alternatives are possible:

• Demote the DCA App version from Production state back to Development to fix bugs, re-
test and promote back to Production state.

• Copy the DCA App version into a new version with the purpose to improve its business
logic (in terms of efficiency, functionality or both) and eventually promote the newer
version to Production state.

• Export the DCA App version from the current network and import it onto another network.

Chapter 6
The Process

6-15

7
Monitoring a DCA App

Custom MEAL general description – templates and their purpose.

The monitoring of the execution of a DCA App is possible by means of the Custom MEAL
feature.The Custom MEAL feature enables a DCA App programmer to define and use
measurements, KPIs and events, on demand:

• Measurements are used to count specific events or amounts, as required by the DCA
App’s business logic. Their historical values measured during specific time intervals
and/or on specific hosts are available via reports;

• KPIs display real-time statistics of the measured events or amounts, like for instance
average values;

• Events may be triggered automatically when the currently measured values exceed the
configured thresholds.s

Alternatively, events may be triggered explicitly from the DCA App code.

The Custom MEAL feature hides most of the complexity of the underlying DSR objects that
implement the measurements, KPIs and events by defining a number of four templates,
which are designed to implement specific tasks:

• The Counter template – is used to count events. The counter values are available only
off-line through the Measurement Reports;

• The Rate template – is most typically used to calculate message rates. It generates KPIs,
Measurement Reports and may be used to automatically raise alarms if the configured
threshold values are exceeded;

• The Basic template – is used to measure averages or number of elements in a set (e.g.
to calculate average size of AVPs, messages or number of users registering/
deregistering). It generates KPIs, Measurement Reports and may be used to
automatically raise alarms if the configured threshold values are exceeded;

• The Event template – is used to explicitly raise/clear alarms or generate events from the
Perl script when specific business logic conditions are detected.

Each of the templates is available in scalar and arrayed format.

We denote by "differentiation" the process of assigning a C-MEAL template instance to a
DCA App. We denote by "un-differentiation" the reverse process of removing a C-MEAL from
a DCA App and basically returning it to the pool of un-differentiated C-MEAL, from where it
can be re-assigned to another (or even the same) DCA App.

7-1

8
A DCA App Using Custom MEALs

Monitoring a DCA App introduced the Custom MEAL (C-MEAL) templates and their
applicability. This chapter describes a simple DCA App that uses a Rate C-MEAL to monitor
the rate of the incoming Diameter requests with just two lines of Perl code.

8.1 The Rate DCA App
The “Rate” DCA App differentiates a Rate C-MEAL, initializes it and pegs it every time a
Diameter request is received. The operator can monitor the incoming message rate in real
time (KPI), check the history of the measured value (measurement report) and get notified
when the configured thresholds are exceeded (alarm).

8.2 Prerequisites
The DCA Framework must have been previously activated as described in DCA Framework
and Application Activation and Deactivation document. Also, a DCA App with the name
“Rate” shall be activated as described in [1].

The “Rate” DCA App has to be enabled on all the DA-MPs in the network from the SO Main
Menu: Diameter, select Maintenance, and click Applications.

An ART rule shall be added that enables Diameter requests to be delivered to the “Rate”
DCA App.

8.3 The Process
The following steps must be followed in order to provision the “Rate” DCA App:

Business Logic and Configuration Data
Provisioning

Custom MEAL Configuration

Step 1: Configure the DCA App's General Options
and Behavior

Step 2: Create New Development Application
Version

Step 3: Define the Configuration Data Schema

Step 4: Provision the Configuration Data

Step 5: Provision the DCA App Business Logic

Step 6: Render the Flow Control Chart

Step I: Differentiate a C-MEAL

Step 7: Test the DCA App Version

Step 8: Promote the DCA App Version to Production

Differentiate a C-MEAL is required in order to assign a C-MEAL to the “Rate” DCA App,
which can be then be used via the C-MEAL API, which is described in Custom MEAL API

8-1

8.3.1 Differentiate a C-MEAL
C-MEALs are differentiated from the Main Menu, navigate to DCA Framework, select
Rate, and in Custom MEALs screen, click on Insert. For the “Rate” DCA App in
particular, "TestRate", a scalar rate C-MEAL, will be differentiated. "TestRate" will raise
an alarm when the configured thresholds are exceeded. The threshold values
represent percentages from the 100% Threshold Value, which in our example is
exactly 100.

Figure 8-1 TestRate Differentiation

8.3.2 Configure the DCA App's General Options and Behavior
At this stage there is no version available for the Blacklist DCA App. As a result, the
DCA App will be in the operational state “Unavailable”. No traffic is forwarded to the
“Blacklist” DCA App and for outside observers the DCA App behaves as specified in
the SO screen Main Menu. From the main menu, click DCA Framework, select <DCA
App Name> and select System Options. For more information see System Options.

The Run-time error configuration section of the same screen defines the behavior of
the DCA App in case a runtime error occurs during the execution of the event
handlers.

Finally, the DCA App programmer must ensure that the names specified on the NO
screen Main Menu. From the main menu, click DCA Framework, select <DCA App
Name> and select General Options. See General Options Screen for the Diameter
request and answer event handlers (Perl subroutines) are consistently used in the Perl
script. For Blacklist in particular, Perl Subroutine for Diameter Answer shall be left
empty because there is no event handler defined to process the Diameter answers.

8.3.3 Create New Development Application Version
Navigate to the Main Menu: DCA Framework, select the <DCA App Name>, click
Application Control screen on the NO and click “Create New Development”. The

Chapter 8
The Process

8-2

“Create New Development” screen will be displayed. Specify a name for the newly created
“Blacklist” version and optionally provide comments (for example, author name, brief
description of the business logic, etc.).

Figure 8-2 Create a New Application Version

Figure 8-3 New Application Version Created

8.3.4 Define the Configuration Data Schema
“Rate” does not need any DCA App configuration data.

8.3.5 Provision the Configuration Data
“Rate” does not need any DCA App configuration data.

8.3.6 Provision the DCA App Business Logic
The “Rate” DCA App implements a simple business logic that consists of pegging the Rate C-
MEAL each time a Diameter request is received.

Chapter 8
The Process

8-3

The Perl code is illustrated below. Note that the C-MEAL name used to initialize the
Perl object must be the same as the one configured for the C-MEAL during
differentiation (“TestRate”).

my $rateObject = new dca::meal::rate("TestRate");
die "Failed to bind to the rate template" unless $rateObject;
 # force compilation error if
 # rateObject initialization fails

my $eventObject = new dca::meal::event("TestEvent");
die "Failed to bind to the event template" unless $eventObject

sub process_request{
 $rateObject->peg(); # or `die unless $rateObject->peg();´ to
force
 # a runtime error if pegging fails
}

And that's it! Alarms will be automatically raised when the
configured
thresholds are exceeded

#
Alternative version to log an event when pegging fails - un-comment
eventObject initialization
#
sub process_request{
my $err = $rateObject->peg();
#
if (! $err){
if (! $eventObject->isThrottled(dca::meal::Minor)){
$err = $eventObject->log(dca::meal::Minor,
"Pegging failed");
}
}
}

8.3.7 Render the Flow Control Chart
After editing the script, while in the Development state, the following actions are
possible:

• Render Chart (to generate the flowchart from the Perl code);

• Render Code (to generate a Perl code skeleton from the flowchart);

• Save (to save the Perl code and the flowchart);

• Check Syntax (to check syntax of Perl script).

Chapter 8
The Process

8-4

Figure 8-4 Development Environment Buttons

The "Render Chart" action generates a flowchart based on the Perl code. Note that the
flowchart has a Perl subroutinegranularity and not a Perl instruction granularity. The
flowchart's main purposes are: (i) to describe how the callback subroutines are linked to the
event handlers (Diameter message handlers or other callback subroutines) that registers
them and (ii) to indicate the terminating actions (drop, forward or return answer).

The flowchart will not illustrate on which condition a Perl subroutine is invoked (i.e. if
conditions) or how many times a Perl subroutine is invoked (i.e. loop conditions). Also, the
"Render Chart" action shall be explicitly triggered by clicking the corresponding button after
each modification of the Perl script.

The approach pursued by this ("Blacklist") and subsequent DCA App examples in this
document ("CountULR" and "Rate") is based on the idea that a DCA App programmer will
first provision the Perl code and then render the flowchart. The "Render Code" action allows a
somewhat opposite approach, by first drawing a flowchart and then generating a Perl script
skeleton based on it.

The “Save” button allows the flowchart and Perl code to be saved, while the DCA App version
is in Development or Trial state.

The “Check Syntax” button becomes enabled once the "Save" action has been completed,
while the DCA App version is in Development or Trial state. It performs a syntax check on the
Perl code and displays the errors if the syntax check fails.

Chapter 8
The Process

8-5

8.3.8 Test the DCA App Version
Having the configuration data and business logic provisioned, it is now time to test the
“Blacklist” DCA App.

A DCA App version is tested by promoting it to the Trial state, which will automatically
result in running it on the dedicated Trial DA-MPs.

The first step is therefore to configure the Trial DA-MPs, which can be done from the
“Trial MPs Assignment” screen (see Figure 3-10 and Trial MPs Assignment Screen).

The Trial DA-MPs assignment is configured per DCA App, that is, it needs not be
repeated for each DCA App version.

Note also that our network contains only one DA-MP, which will be also a Trial DA-MP.
However, in a real life deployment there would typically be a few Trial DA-MPs and a
number of non-Trial DA-MPs.

Figure 8-5 Trial MP Assignment

Next, on the “Application Control” screen, promote the DCA App version from
Development to Trial state by selecting it and clicking on the “Make Trial” button.

While in Trial state the DCA App version can be: modified, saved, have the syntax
checked and, in addition to the Development state, it can also be compiled (by clicking
the "Compile" button, see Figure 3-9), as further described in DCA Application
Lifecycle. During each new cycle starting with the first Perl code modification and
lasting until the next successful compilation (with an arbitrarily number of
modifications, save and syntax check actions taking place during this time), the Trial
DA-MPs will execute the previously successfully compiled Perl script of the respective
DCA App version.

If successfully compiled, the “Blacklist” DCA App on the Trial DA-MP will switch into
the operational state Available (from the SOMain Menu: Diameter, select
Maintenance, and click Applications screen). On the non-Trial DA-MPs the DCA App
operational state will remain Unavailable because there is no DCA App version in
Production state at this moment.

At this stage, we can finally monitor the “Rate” DCA App in the following ways:

Chapter 8
The Process

8-6

1. The “DCA:Rate” KPI group includes all the KPIs that belong to the “Rate” DCA App. From
the Main Menu, select Status&Manage, and click KPIs the “DCA:Rate” group shall be
included in the KPI filter criteria as shown in Figure 8-6. As a result, the exponentially
smoothened average of the ingress rate (TestRate) is displayed in real time as shown in
Figure 8-7.
The history of the measured values can be accessed from the Main Menu, seleclt
Measurements and click Report screen. The “DCA:Rate” measurements group includes
all the measurements that belong to the “Rate” DCA App and shall be included in the
filtering criteria. As a result, the history of the TestRate measurements is displayed as
shown in Figure 8-9.

An alarm with the corresponding severity is raised when the respective threshold values
are exceeded. This can be seen for instance in Figure 8-7. The alarm details can be
accessed from Main Menu and click on Alarms&Events.

2. Figure 8-10 illustrates the alarm history, obtained by progressively increasing the
message rate above the critical set threshold and then progressively reducing it below
the minor clear threshold.

Figure 8-6 Filter the DCA - Rate KPIs

Figure 8-7 Display TestRate KPI

Chapter 8
The Process

8-7

Figure 8-8 Filter the DCA - Rate Measurements

Figure 8-9 Display the TestRate measurements

Chapter 8
The Process

8-8

Figure 8-10 TestRate Alarm History

8.3.9 Promote the DCA App Version to Production
A successfully compiled Trial DCA App version can be promoted to the Production state. For
this purpose, on the “Application Control” screen, the DCA App version shall be selected and
the “Make Production” button clicked.

At this stage the only DCA App version available so far is in Production state. All non-Trial
DA-MPs will start running it and on these DA-MPs the DCA App operational state will become
Available. Because there is no DCA App version in the Trial state, the Trial DA-MPs will run
the Production version as well.

Please note that our network is a very particular case that contains one single DA-MP, which
is configured as a Trial DA-MP. This means that the Production version will run on this DA-
MP if and only if no Trial version exists. As soon as a (new) Development version will be
promoted to the Trial state, the Trial DA-MP will stop running the Production version and will
start executing the (new) Trial version.

While in Production state, the business logic of the DCA App version cannot be changed
anymore. It’s only the configuration data that can be updated.

We have achieved our initial objective of running the “Blacklist” DCA App in our network.
From this point on a number of alternatives are possible:

• Demote the DCA App version from Production state back to Development to fix bugs, re-
test and promote back to Production state.

• Copy the DCA App version into a new version with the purpose to improve its business
logic (in terms of efficiency, functionality or both) and eventually promote the newer
version to Production state.

• Export the DCA App version from the current network and import it onto another network.

Chapter 8
The Process

8-9

9
GUI Overview

9.1 NO/SO differences
Table 9-1 NO/SO GUI differences

NO SO

Framework Configuration Read-only

General Options Read-only

Custom MEALs Read-only

Trial MP Assignment Read-only

New application versions are created -

Existing application versions are copied -

Business Logic and/or NO Config data imported/
exported

SO Config data imported/exported

Flowchart and Script Development Read-only

Application version state transitions Read-only

Defining the configuration tables (schema) Read-only

Provisioning NO Configuration Data (table
content)

Provisioning SO Configuration Data (table
content)

NO configuration read-only.

- System Options

9.2 NO Screens
The DCA Framework left hand menu on the NO includes the following screens:

• Configuration Screen

Each activated application is represented by the separate menu folder with the given
application name. The application folder on the NO includes the following screens
(“Application Control” screen contains the buttons that lead to other DCA screens):

• Custom Meals

• General Options Screen

• Trial MPs Assignment Screen

• Application Control Screen

– Create New Development Screen

– Copy to New Development Screen

– Import Pop-Up Window

– Export Pop-Up Window

9-1

– Development Environment

– Tables Screen

* Provision Tables Screen

Figure 9-1 NO Screens

9.2.1 Configuration Screen
The NO Configuration screen allows configuring DCA Framework parameters:
“Maximum Size of Application State” and “Maximum Size of the Key”.

Figure 9-2 NO Configuration Screen

9.2.2 Custom MEALs

9.2.2.1 View Custom MEALs
The NO Custom MEALs screen lists the Custom MEAL templates differentiated for
the current DCA App. It also enables new Custom MEAL templates to be differentiated
and differentiated Custom MEAL templates to be modified.

Chapter 9
NO Screens

9-2

There are a limited number of Custom MEAL templates of each type for all the DCA Apps
activated in a network. An error will be displayed if the DCA App programmer attempts to
exceed these limits.

It is not possible to modify the counter/basic/rate/event and scalar/arrayed type of a
differentiated Custom MEAL template. If the type needs to be modified, then a new Custom
MEAL template shall be created (provided the limits haven't been exceeded yet) and the old
one shall be deleted.

Figure 9-3 The Custom MEAL View Screen

9.2.2.2 Configure the Counter Custom MEAL Template
The following image illustrates the configuration options for inserting a Counter template.

Figure 9-4 The Counter Template Configuration Screen

Chapter 9
NO Screens

9-3

9.2.2.3 Configure the Basic Custom MEAL Template
The following image illustrates the configuration options for inserting a Basic template.
The Basic template is optionally associated with an alarm which will be automatically
raised if the configured thresholds are exceeded.

Figure 9-5 The Basic Template Configuration Screen

9.2.2.4 Configure the Rate Custom MEAL Template
The following image illustrates the configuration options for inserting a Rate template.
The Rate template is optionally associated with an alarm which will be automatically
raised if the configured thresholds are exceeded.

Chapter 9
NO Screens

9-4

Figure 9-6 The Rate Template Configuration Screen

9.2.2.5 Configure the Event Custom MEAL Template
The following image illustrates the configuration options for inserting an Event template.

Chapter 9
NO Screens

9-5

Figure 9-7 The Event Template Configuration Screen

9.2.3 General Options Screen
The NO General Options screen enables specifying the Perl Subroutines for
Diameter Request and Answer, “Application State Data TTL”, “Read Only UDR Access
as Guest” and “Max. UDR Queries per Message”.

Figure 9-8 NO General Options

Chapter 9
NO Screens

9-6

9.2.4 Trial MPs Assignment Screen
The NO Trial MPs Assignment screen allows specifying which DA-MPs shall run the Trial
version of the DCA App. If there is no Trial version available, the Trial DA-MPs will run the
Production version, if there is any available.

If a DCA App version is promoted to the Trial state but no Trial DA-MPs are currently
configured assigned, a warning message will be displayed.

Figure 9-9 NO Trial MPs Assignment

9.2.5 Application Control Screen
The NO Application Control screen allows:

• Listing all application versions configured in the system

• Inserting a new application version (via NO New Development Insert Screen)

• Copying and modifying an existing application version (via NO New Development Copy
Screen)

• Exporting an application version entirely (business logic + provisioned data from the NO)

• Exporting only the NO provisioned data of an application version

• Importing a previously exported application version (business logic + NO provisioned
data) (via NO Import Pop-Up Window).

• Importing only the NO provisioned data to an existing application version (via NO Import
Pop-Up Window)

• Accessing the application version configuration tables (via NO Tables View Screen)

• Accessing business logic and flowchart of an application version (via NO Development
Environment Screen)

• Deleting an existing application version

• Changing the status of an application version (Development, Trial, Production, Archived)

Chapter 9
NO Screens

9-7

Figure 9-10 NO Application Control

9.2.6 Create New Development Screen
The NO Create New Development screen allows creating a new DCA App version
with a given name and comments. It is accessed by clicking “Create New
Development” button on the “Application Control” screen,

Figure 9-11 NO Create New Development Screen

Currently, there might be up to 10 application versions at a time.

9.2.7 Copy to New Development Screen
The NO Copy to New Development screen allows copying an entire DCA App
version, consisting of business logic (Perl script, flowchart and configuration table
schemas) and the NO provisioned configuration data, into a new version. It is
accessed by selecting the application version and clicking “Copy to New
Development” button on the “Application Control” screen.

Chapter 9
NO Screens

9-8

Figure 9-12 NO Copy to New Development

When the new Application Version is copied it will become visible on the Application Control
screen displaying the user provisioned name in the "Version Name" column and comments in
the "Comments" column.

The copied Application will also include the business logic (DB tables + Perl script) and the A
level (NO level) configuration data (if any was specified).

9.2.8 Export Pop-Up Window
The exported application version is stored in the form of a JSON file.

DCA Framework GUI offers three export options:

1. Export the business logic only (that includes the defined tables, flow control chart, the
script, custom Meals, KPIs, Events associated with the application version. It does not
include the provisioned data)

2. Export the business logic and the configuration data (in addition to the business logic the
provisioned data for the tables is also exported)

3. Export the configuration data only

For the first option, select the application version and click “Export Business Logic”
(becomes enabled when the row is selected).

For the second option, select the application version and click “Export Both” (becomes
enabled when the row is selected).

For the third option, select the application version and click “Export A Level Config Data”
(becomes enabled when the row is selected). The export popup window is illustrated in the
following image.

Chapter 9
NO Screens

9-9

Figure 9-13 NO Export

When the user tries to export the business logic, there is a validation to check whether
the flowchart/script has been compiled. If not, the export will be aborted and the error
will be given.

The A level (NO level) configuration data can be exported from the NO machine, but
not from the SO.

9.2.9 Import Pop-Up Window
The NO Import Pop-Up window allows specifying a JSON file from which the business
logic (if required) and the NO provisioned data shall be imported.

Note: The provisioned data imported to the existing business logic shall be appended
to the existing data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete
all provisioned rows on the “Provision Table” screen and then import the new
configuration data.

DCA Framework GUI offers three import options:

1. Import the business logic only (that includes the defined tables, flow control chart,
the script, custom Meals, KPIs, Events associated with the application version. It
does not include the provisioned data import, hence the defined tables are empty
after the import)

2. Import the business logic and the configuration data (in addition to the business
logic the provisioned data for the tables is also imported)

3. Import the configuration data only

For the first option, click “Import Business Logic” (always enabled)on the NO
“Application Control” screen. Leave the checkbox “Import also Config data”
unchecked. Select the file.

For the second option, click “Import Business Logic” (always enabled)on the NO
“Application Control” screen. Check the checkbox “Import also Config data”. Select the
file.

For the third option, select the application version and click “Import A Level Config
Data” (becomes enabled when the row is selected). Select the file.

Chapter 9
NO Screens

9-10

Figure 9-14 NO Import Business Logic

Figure 9-15 NO Import Configuration Data

During the import, validations are performed particularly in order to ensure that the format of
the DCA App configuration data to be imported is compatible with that of the target DCA App
version.

As a result, a number of fatal errors may occur during the import, which will force the import
to be aborted regardless of “Abort on first error” checkbox. Such fatal errors are:

• File larger than 25MB;

• File has wrong structure or missing data;

• All the errors that happen during the business logic import;

• If the user tries to import the config data to an existing application version, but none of the
table names from the imported file matches the table names of the selected application;

• If the user tries to import the config data to an existing application version, but none of the
field names in the tables from the imported file matches the field names in the tables of
the selected application;

• Level mismatch. A -level DCA Application configuration data can be imported only on the
A level. The same applies to the B level data.

Non-fatal errors, on the other hand, let the user decide whether to abort the import or not
(depending on the value of “Abort on first error” checkbox).

Chapter 9
NO Screens

9-11

9.2.10 Development Environment
Development Environment is accessed by selecting the application version and
clicking the “Development Environment” button on the Application Control screen. The
DCA Development Environment (DCA-DE) is where a custom Diameter application
developer can edit, save, check syntax, and compile the application code for a
Diameter Custom Application.

See DCA Activation and Deactivation for more details.

9.2.11 Tables Screen
The NO Tables View screen allows

• Listing all the config tables (NO+SO) defined for an application version

• Inserting/editing a new config table (NO or SO) for the development or trial
application version (via NO Table Insert/Edit Screen).

• Deleting an existing config table (NO or SO) for the development or trial
application version

• Viewing an existing config table of an archived or production application version
(via NO Table View Screen).

• Accessing the Provision Table View and Insert/Edit screens (via NO Provision
Table View Screen, NO Provision Table Insert Screen and NO Provision Table Edit
Screen).

“Tables View” screen is accessed by selecting the application version and clicking the
“Config Tables and Data” button on the “Application Control” screen.

Figure 9-16 NO Tables View Screen

The “Insert”, “Edit” and “Delete” buttons are disabled on the “Tables View” screen for
the archived and production application versions.

The “View” button is enabled for the archived and production application versions if the
table is selected.

The “View” button is disabled for the development and trial application version.

The “Provision Table” button is always enabled if the NO table is selected (it is
disabled for the SO tables from the NO GUI).

Chapter 9
NO Screens

9-12

Figure 9-17 NO GUI tables and configuration data accessibility

The following table illustrates the access rights for the DCA App configuration schema and
data provisioning tables. The NO/SO DCA database tables (schema) can be created, deleted
and modified from the NO GUI for the development and trial application versions; they can be
only viewed for the archived and production application version. The NO DCA database
tables can be provisioned anytime from the NO GUI. The SO tables cannot be provisioned
from the NO GUI.

The NO Table Insert screen allows defining a new configuration table (NO or SO). It is
accessed by clicking the “Insert” on the “Tables View” screen for the development and trial
application versions.

Chapter 9
NO Screens

9-13

Figure 9-18 NO Tables Insert Screen

Currently, there might be up to 10 configuration tables per application version
(NO+SO).

The configuration table definition includes:

• Table Name and Description

• Number of table rows (single vs multiple up to 2000 rows)

• Table level (whether the table resides on the NO or the SO)

• Table Fields (up to 20 now)

– Field Name and Description

– Whether the field is unique

– Whether the field is mandatory

– Field Data Type

– Field Default value

The table fields can be of the following types (depending on the selected data type,
ranges must be also defined):

• Integer (Range: Min. and Max. values)

Chapter 9
NO Screens

9-14

• Float (Range: Min. and Max. values)

• UTF8String (Range: Max. length)

• OctetString (Range: Max. length)

• IPaddress

• DiameterURI

• DiameterIdentity

• Enumerated (The values)

• Boolean

The NO Table Edit screen allows editing the schema of an existing DCA App configuration
table (NO or SO).

The NO Table View (Read-only Insert/Edit) screen allows viewing a DCA App configuration
table in read-only mode. It is accessed when the table is selected and the “View” button is
clicked on the NO “Tables View” screen for the archived and production application version.

9.2.12 Provision Tables Screen
The NO Provision Table View screen allows:

• Listing all the data rows provisioned for the NO configuration table

• Inserting a new data row to the NO configuration table (via NO Provision Table Insert
Screen)

• Editing a data row of the NO configuration table (via NO Provision Table Edit Screen)

• Deleting a data row from the NO configuration table

• Deleting all provisioned rows at once

It is accessed by selecting the table and clicking “Provision Table” button on the “Tables
View” screen.

Figure 9-19 Provision Table button

The “Provision Table” button is disabled for the SO tables from the NO GUI,

Chapter 9
NO Screens

9-15

Figure 9-20 NO Provision Table View Screen

Up to 2000 rows of data can be provisioned per table unless the table has only single
row (the “Single row” checkbox has been checked on the “Table Insert” screen).

The NO Provision Table Insert screen allows inserting a new data row to the NO
configuration table.

Figure 9-21 NO Provision Table Insert Screen

During the data insert, the GUI performs the following validations:

• Whether the mandatory value is present

• Whether the unique value is unique

• Whether the maximum of data rows is reached

• Whether the data inserted corresponds to the specified field data type

• Whether the data inserted is between the specified min-max range for the field

• Whether the entered sting value is no longer than the allowed maximum for the
field

Chapter 9
NO Screens

9-16

• Whether the entered enumerated value is within the allowed range of enumerated values
for the field

• Etc.

The NO Provision Table Edit screen allows editing a data row of the NO configuration table.

9.3 SO Screens
The DCA Framework left hand menu on the SO includes the following screens:

• Configuration Screen (NO screen, read-only on the SO)

Each activated application is represented by the separate menu folder with the given
application name. The application folder on the NO includes the following screens
(“Application Control” screen contains the buttons that lead to other DCA screens):

• Custom Meals (NO screen, read-only on the SO)

• General Options Screen (NO screen, read-only on the SO)

• Trial MPs Assignment Screen (NO screen, read-only on the SO)

• Application Control Screen

– Import Pop-Up Window

– Export Pop-Up Window

– Development Environment (NO screen, read-only on the SO)

– Tables Screen (NO screen, read-only on the SO, except for “View” and “Provision
Table” button)

* Provision Tables Screen

• System Options Screen

Figure 9-22 SO Screens

9.3.1 Application Control Screen
The SO Application Control screen allows:

• Listing all application versions configured in the system

• Exporting only the SO provisioned data of an application version (via SO Export Pop-Up
Window)

Chapter 9
SO Screens

9-17

• Importing only the SO provisioned data to an existing application version (via SO
Import Pop-Up Window).

• Accessing the application version configuration tables (via SO Tables View
Screen)

• Accessing the flowchart and business logic of an application version (via
development environment ,read-only)

Figure 9-23 SO Application Control Screen

9.3.2 Export Pop-Up Window
The B level (SO level) configuration data can be exported from the SO machine, but
not from the NO.

To export the configuration data to a JSON file, select the application version and click
Export B Level Config Data (becomes enabled when the row is selected).

9.3.3 Import Pop-Up Window
The SO Import Pop-Up window allows specifying a JSON file from which the SO
provisioned data shall be imported.

Note:

The provisioned data imported to the existing business logic shall be
appended to the existing data rows.

If the user wants to overwrite the configuration data, it is recommended to first delete
all provisioned rows on the “Provision Table” screen and then import the new
configuration data.

Chapter 9
SO Screens

9-18

The B level (SO level) configuration data can be imported only to the SO machine.

To import the configuration data from the JSON file, select the application version and click
Import B Level Config Data (becomes enabled when the row is selected). Select the file.

9.3.4 Tables Screen
The SO Tables View screen allows:

• Listing all the config tables (NO+SO) defined for an application version

• Viewing an existing config table (via NO/SO Table View Screen)

• Accessing the Provision Table View and Insert/Edit screens (via SO Provision Table View
Screen, SO Provision Table Insert Screen and SO Provision Table Edit Screen).

The SO “Tables View” screen is accessed by selecting the application version and clicking
“Config Data” button on the SO “Application Control” screen.

Figure 9-24 SO Tables View Screen (empty)

The “Insert”, “Edit” and “Delete” buttons are disabled on the SO “Tables View” screen.

The “View” button is enabled if the table is selected.

The “Provision Table” button is always enabled if the NO/SO table is selected.

The following table illustrates the access rights for the DCA App configuration schema and
data provisioning tables on the SO. The NO/SO DCA App table schemas can only be viewed.
The level A DCA App configuration tables content can only be view from the SO GUI. The
level B DCA App configuration tables can be provisioned.

Chapter 9
SO Screens

9-19

Figure 9-25 SO GUI tables and Configuration data accessibility

The SO Table View (Read-only Insert/Edit) screen allows viewing a configuration
table in read-only mode. It is accessed when the table is selected and the “View”
button is clicked on the SO “Tables View” screen.

9.3.5 Provision Tables Screen
The SO Provision Table, View screen allows:

• Listing all the data rows provisioned for the SO-rooted DCA App configuration
table

• Inserting a new data row to the SO-rooted DCA App configuration table (via SO
Provision Table Insert Screen)

• Editing a data row of the SO-rooted DCA App configuration table (via SO Provision
table Edit Screen)

• Deleting a data row from the SO-rooted DCA App configuration table.

• Deleting all provisioned rows at once

Note:

The NO-rooted DCA App configuration tables, as well as the schema
definitions of both the NO-rooted and SO-rooted DCA App configuration
tables are accessible on the SO only in read-only mode.

The SO “Provision Table View” screen is accessed by selecting the table and clicking
“Provision Table” on the SO “Tables View” screen.

The SO Provision Table, Insert screen allows inserting a new data row to the SO-
rooted DCA App configuration table.

The SO Provision Table, Edit screen allows editing a data row of the SO-rooted DCA
App configuration table.

Chapter 9
SO Screens

9-20

9.4 System Options
“System Options” screen is present on the SO only.

“System Options” screen enables the configuration of the DSR application parameters that
are:

• Relevant to the operational status “unavailable”. These options allow to specify the
behavior in case when the application state is “unavailable” (from Main Menu: Diameter,
navigate to Maintenance, and select Applications). The possible behavior is:

– Continue Routing

– Use default route + specify application unavailable route list

– Send Answer with Result-Code AVP + specify Result-Code and Error Message

– Send Answer with Experimental-Result AVO + specify Result-Code, Error Message
and Vendor-Id.

Figure 9-26 System Options for the Unavailable Operation Status

Relevant to the case when the DRL resources are exhausted. The behavior is to send an
error message with the specified Result-Code, Error Message and Vendor-Id.

Figure 9-27 System Options for the Exhausted DRL Resources

Relevant to the run-time error. These options allow to specify the behavior in case of a run-
time error. Runtime errors fall into two categories:

• Perl specific runtime errors – e.g. division by zero, a “die” statement, calling an undefined
(utility, not event handler) subroutine etc.,

• Runtime errors triggered by the DCA framework – e.g. invoking an event handler that
does not exist or exceeding the maximum configured number of executed opcodes.

The possible behavior is:

Chapter 9
System Options

9-21

• Continue Routing

• Discard

• Send Answer with Result-Code AVP + specify Result-Code and Error Message

• Send Answer with Experimental-Result AVO + specify Result-Code, Error
Message and Vendor-Id.

Figure 9-28 System Options for the Run-Time Error

Realm and FQDN that are placed in Answer message generated by the DCA. These
are the values that will be placed in the Origin-Realm and Origin-Host AVPs of the
Answer message generated by DCA. If they are not configured, local node Realm and
FQDN for the egress connection will be used.

Figure 9-29 System Options for the Realm and FQDN

Application invocation. This option is needed to indicate if the subsequent invocation of
application on a different node in the network is allowed or not.

If unchecked, the DSR-Application-Invoked AVP will be inserted, preventing the same
DSR application on another DSR node from receiving the Diameter message.

Figure 9-30 System Options for the Application Invocation

Chapter 9
System Options

9-22

10
APIs

This chapter documents the various APIs available to a DCA App programmer.

10.1 The EDL API

10.1.1 API to Manipulate the Diameter Header
Purpose: Retrieve the Diameter message object needed for subsequent operations on the
Diameter message header and body Prototype: my $msg =
diameter::Param::message($param); where $param is a default parameter provided by all
the event handlers and may be retrieved with my $param = shift;
Purpose: Read the Diameter version number in the Diameter header

Prototype: my $ver = diameter::Message::version($msg); where $ver is undef in case of
failure (e.g. wrong object passed in $msg) or the Diameter version number if success

Purpose: Set the Diameter version number in the Diameter header

Prototype:$err = diameter::Message::setVersion($msg, $ver); where $err is undef in
case of failure (e.g. wrong object passed in $msg) or a non-zero value in case of success

Purpose: Return the length (as number of bytes) of the Diameter message

Prototype: my $len = diameter::Message::messageLength($msg); where $len is undef in
case of failure (e.g. wrong object passed in $msg) or the length of the Diameter message if
success

Purpose: Read the Command Flags of the Diameter message.

Prototype: my $cmdFlags = diameter::Message::commandFlags($msg); where $cmdFlags
is undef in case of failure (e.g. wrong object passed in $msg) or the Command Flags if
success.

Purpose: Read the Command Flags of the Diameter message.

Prototype: my $cmdFlags = diameter::Message::commandFlags($msg); where $cmdFlags
is undef in case of failure (e.g. wrong object passed in $msg) or the Command Flags if
success.

Purpose: Read the Request flag of the Diameter message.

Prototype: my $r = diameter::Message::isRequest($msg); where $r is 1 if the Request
flag is set, 0 if the Request flag is not set or undef if error (e.g wrong object passed in $msg).

Purpose: Read the Diameter Proxiable flag in the Diameter header.

Prototype: my $p = diameter::Message::isProxiable($msg); where $p is 1 if the
Proxiable flag is set, 0 if the Proxiable flag is not set or undef if error (e.g wrong object
passed in $msg).

10-1

Purpose: Set (set to 1) the Diameter Proxiable flag in the Diameter header.

Prototype: $err = diameter::Message::setProxiable($msg); where $err is undef if
error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Proxiable flag in the Diameter header.

Prototype: $err = diameter::Message::clearProxiable($msg); where $err is undef
if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter Error flag in the Diameter header.

Prototype: my $e = diameter::Message::isError($msg) where $e is 1 if the Error
flag is set, 0 if the Error flag is not set or undef if error (e.g wrong object passed
in $msg).

Purpose: Set (set to 1) the Diameter Error flag in the Diameter header.

Prototype: $err = diameter::Message::setError($msg); where $err is undef if error
(e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Error flag in the Diameter header.

Prototype: $err = diameter::Message::clearError($msg); where $err is undef if
error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter Retransmission flag in the Diameter header.

Prototype: my $t = diameter::Message::isRetransmission($msg); where $t is 1 if
the Retransmission flag is set, 0 if the Retransmission flag is not set or undef if error
(e.g wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter Retransmission flag in the Diameter header.

Prototype: $err = diameter::Message::setRetransmission($msg); where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter Retransmission flag in the Diameter header.

Prototype: $err = diameter::Message::clearRetransmission($msg);where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter 4th reserved bit of the Command Flags in the Diameter
header.

Prototype: my $r4 = diameter::Message::isReservedBit4($msg); where $t is 1 if
the 4th bit in the Command Flags flag is set, 0 if the bit is not set or undef if error (e.g
wrong object passed in $msg).

Purpose: Set (set to 1) the Diameter 4th reserved bit of the Command Flags in the
Diameter header.

Prototype: $err = diameter::Message::setReservedBit4($msg);where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Clear (set to 0) the Diameter 4th reserved bit of the Command Flags in the
Diameter header.

Prototype: $err = diameter::Message::clearReservedBit4($msg); where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Chapter 10
The EDL API

10-2

Purpose: Read/Set/Clear the Diameter 5th, 6th and 7th reserved bit in the Command Flags
in the Diameter header.

Prototype: See three examples above where the “Bit4” suffix in the function names is
accordingly replaced by “Bit5”, “Bit6” and respectively “Bit7”.

Purpose: Read the Diameter Command Code in the Diameter header

Prototype: my $cmd = diameter::Message::commandCode($msg); where $cmd is undef if
error (e.g wrong object passed in $msg) or contains the Command Code if success.

Purpose: Set the Diameter Command Code in the Diameter header

Prototype: $err = diameter::Message::setCommandCode($msg, $cmd); where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success.

Purpose: Read the Diameter Application-ID in the Diameter header

Prototype: my $appId = diameter::Message::applicationId($msg); where $appId is
undef if error (e.g wrong object passed in $msg) or contains the Application-ID if success

Purpose: Set the Diameter Application-ID in the Diameter header

Prototype: $err = diameter::Message::setApplicationId($msg, $appId); where $err is
undef if error (e.g wrong object passed in $msg) or a non-zero value if success

Purpose: Read the Diameter Hop-by-Hop Identifier in the Diameter header

Prototype: my $hbh = diameter::Message::hopByHopId($msg); where $hbh is undef if
error (e.g wrong object passed in $msg) or contains the Hop-by-Hop Identifier if success

Purpose: Set the Diameter Hop-by-Hop Identifier in the Diameter header

Prototype: $err = diameter::Message::setHopByHopId($msg, $hbh); where $err is undef
if error (e.g wrong object passed in $msg) or a non-zero value if success

Purpose: Read the Diameter End-to-End Identifier in the Diameter header

Prototype: my $err = diameter::Message::endToEndId($msg); where $err is undef if error
(e.g wrong object passed in $msg) or contains the End-to-End Identifier if success

Purpose: Set the Diameter End-to-End Identifier in the Diameter header

Prototype: $err = diameter::Message::setEndToEndId($msg, $e2e); where $err is undef
if error (e.g wrong object passed in $msg) or a non-zero value if success

10.1.2 API to Manipulate the Diameter AVPs
Purpose: Read from a Diameter message the value of an AVP identified by name and
instance number

Prototype: my $val = diameter::Message::getAvpValue($msg, $avp_name
[, $instance]);
The return values shall be:

• undef if $instance is 0,

• undef if there are less instances of the AVP in the Diameter message than the $instance
value or an AVP with the specified name does not exist in the Diameter message or the
AVP name is not specified in the AVP Dictionary,

Chapter 10
The EDL API

10-3

• The value of the $instance-th instance of the AVP (starting from 1),

• The value of the first instance of the AVP if $instance has been omitted,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Purpose: Add at the end of the Diameter message an AVP identified by name and
value

Prototype: my $err =
diameter::Message::addAvpValue($msg, $avp_name, $avp_val);
The return code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP value cannot be converted to the AVP data type specified in the
AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Purpose: Set the value of an AVP in a Diameter message

Prototype: my $err =
diameter::Message::setAvpValue($msg, $avp_name, $avp_val [, $instance]);
If $instance has been omitted, the first instance of the AVP will be set. The return
code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if $instance is 0,

• undef if the AVP exists in the Diameter message but $instance value is greater
than the number of AVP instances in the Diameter message,

• undef if the AVP value cannot be converted to the AVP data type specified in the
AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Purpose: Set the value of an existing AVP in a Diameter message or add that AVP at
the end of the Diameter message if the message already contains exactly $instance –
1 AVPs:

Prototype: my $err =
diameter::Message::setAddAvpValue($msg, $avp_name, $avp_val
[, $instance]);
If $instance has been omitted, it defaults to 1. The return code shall be:

Chapter 10
The EDL API

10-4

• 1 in case an AVP with the specified instance number exists and its value has been
successfully set,

• 2 if the Diameter messages contains exactly $instance – 1 AVPs of the specified type, in
which case the $instance’s AVP will be added to the end of the message,

• undef if the Diameter messages contains strictly less than $instance – 1 AVPs of the
specified type,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name exists in the AVP Dictionary,

• undef if the AVP name is valid but the Diameter messages already contains $instance or
more AVPs of the specified type,

• undef if $instance is 0,

• undef if the AVP value cannot be converted to the AVP data type specified in the AVP
Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object or
the other parameters (if any) are undef.

Purpose: Read the value of an AVP’s flag octet

Prototype: my $flags = diameter::Message::getAvpFlags($msg, $avp_name
[, $instance]);
The return value shall be:

• The value of flags octet of the $instance-th instance of the AVP (starting from 1),

• The value of the first instance of the AVP if $instance has been omitted,

• undef if there are less instances of the AVP in the Diameter message than the $instance
value

• undef if $instance is 0

• undef if an AVP with the specified name does not exist in the Diameter message

• undef if the AVP name is not specified in the AVP Dictionary

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object or
the other parameters (if any) are undef.

Purpose: Set the value of an AVP’s flag octet

Prototype: my $err = diameter::Message::setAvpFlags($msg, $avp_name, $mask
[, $instance]);
A 1 bit in $mask indicates a bit to set, while a 0 bit in $mask preserves the original bit value.

If $instance has been omitted, the flags of the first instance of the AVP will be set. The return
code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if the AVP exists in the Diameter message but $instance value is greater than the
number of AVP instances in the Diameter message,

Chapter 10
The EDL API

10-5

• undef if $instance is 0,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Note:

The “V” bit preserves the original value regardless the $mask value.

Purpose: Clear specific bits in an AVP’s flag

Prototype: my $err =
diameter::Message::clearAvpFlags($msg, $avp_name, $mask [, $instance]);
A 1 bit in $mask indicates a bit to clear, while a 0 bit in $mask preserves the original bit
value.

If $instance has been omitted, the flags first instance of the AVP will be cleared. The
return code shall be:

• Non-zero in case of success,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP name is valid but no such AVP exists in the Diameter message,

• undef if the AVP exists in the Diameter message but $instance value is greater
than the number of AVP instances in the Diameter message,

• undef if $instance is 0,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Note:

The “V” bit preserves the original value regardless the $mask value.

Purpose: Delete an AVP identified by name, from a Diameter message

Prototype: my $err = diameter::Message::delAvp($msg, $avp_name
[, $instance]);
If $instance has been omitted, the first instance of the AVP will be deleted. The return
code shall be:

• 1 in case AVP is deleted,

• 0 if AVP does not exist in message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if the AVP exists in the Diameter message but $instance value is greater
than the number of AVP instances in the Diameter message,

• undef if $instance is 0,

Chapter 10
The EDL API

10-6

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object or
the other parameters (if any) are undef.

Purpose: Delete all the instances of an AVP from a Diameter message

Prototype: my $err = diameter::Message::delAvpAll($msg, $avp_name);
The return code shall be:

• 1 in case AVP is deleted,

• 0 if AVP does not exist in message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object or
the other parameters (if any) are undef.

Note:

The AVPs on the same nesting level are deleted, i.e. the un-grouped AVPs in a
Diameter message, if the function is called with a Diameter message parameter or
the AVPs in a specific grouped AVP that are not deeper nested in a further grouped
AVP, if the function is called with a Grouped AVP parameter.

Purpose: Return the number of instances of an AVP from a Diameter message

Prototype: my $cnt = diameter::Message::countAvp($msg, $avp_name);
The return value shall be:

• 0 if the AVP does not exist in the Diameter message,

• A strictly positive number indicating the number of occurrences of the respective AVP in
the Diameter message,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp object or
the other parameters (if any) are undef.

Note:

The AVPs on the same nesting level are counted, i.e. the un-grouped AVPs in a
Diameter message, if the function is called with a Diameter message parameter or
the AVPs in a specific grouped AVP that are not deeper nested in a further grouped
AVP, if the function is called with a Grouped AVP parameter.

Purpose: Check whether a specific AVP (instance) exists in a Diameter message.

Prototype: my $exists = diameter::Message::avpExists($msg, $avp_name
[, $instance]);
The return value shall be:

• True if $instance is omitted and at least one AVP with the specified name exists,

Chapter 10
The EDL API

10-7

• True if $instance is specified and an AVP with the specified name and instance
number exists,

• False if no AVP with the specified name exists in the Diameter message,

• False if $instance is specified, at least one AVP with the specified name exists,
but the number of instances of the respective AVP is strictly less than the
specified $instance,

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Note:

The AVPs on the same nesting level are checked, i.e. the un-grouped AVPs
in a Diameter message, if the function is called with a Diameter message
parameter or the AVPs in a specific grouped AVP that are not deeper nested
in a further grouped AVP, if the function is called with a Grouped AVP
parameter.

Purpose: Return the length of the payload of an AVP from a Diameter message

Prototype: my $len = diameter::Message::avpDataLength($msg, $avp_name
[, $instance]);
If $instance has been omitted, the length of the first instance of the AVP will be
returned. The return value shall be:

• undef if no AVP with that name exists in the Diameter message,

• undef if $instance is specified but less than $instance AVPs exists in the
Diameter message,

• A strictly positive number or 0, indicating the length of the payload of the indicated
AVP instance.

• undef if the AVP name does not exist in the AVP Dictionary,

• undef if $msg does not contain a diameter::Message or diameter::GroupedAvp
object or the other parameters (if any) are undef.

Purpose: Return the AVP map with all the AVPs in the message.

Prototype: $ avpCodestr = diameter::Message::getAvpMap($msg,$avpCodestr);
The return value shall be the map with all the AVPs in the message.

Purpose: Return the AVP code of the AVP from the diameter message.

Prototype: my $avpCodeval = diameter::Message::getAvpCode($msg,$avpname);
The return value shall be the AVP code for the AVP.

Purpose: Return the vendor-id of the AVP from the diameter message.

Prototype: my $avpVendorId = diameter::Message::getAvpVendorId($msg,$avp);
The return value shall be the vendor-id for the AVP.

Chapter 10
The EDL API

10-8

Purpose: Return if session-id is the first AVP, then it’s AVP code from the diameter message.

Prototype: $ sessionIdAvpCode = diameter::Message::isSessionIdFirstAvp($msg);
The return value shall be the AVP code of session-id, if it is the first AVP. If not, it will be
undef.

Purpose: Return count of specific AVPs from the message.

Prototype: my $originRealmCnt = diameter::Message::countAvp($msg, “Origin-
Realm”);
The return value shall be the count of specific AVPs from the message.

10.1.3 API to Manipulate the Diameter Grouped AVPs
All the API functions introduced in the previous section, work on grouped AVPs as well. For
instance, the value of the Subscription-Id grouped AVP may be read with: my $gVal =
diameter::Message::getAvpValue($msg, “Subscription-Id”); and the Subscription-Id
grouped AVP may be added to a Diameter message with :my $err =
diameter::Message::addAvpValue($msg, “Subscription-Id”, $gVal);
It shall be noted, however, that in this case $gVal is an OctetString that contains both the
“Subscription-Id-Type” and the “Subscription-Id-Data” AVPs.

This approach is particularly handy when the “Subscriber-Id” grouped AVP needs to be
copied from one Diameter message to another, without having to look into the individual
AVPs included in it. However, if accessing the individual AVPs included into a grouped AVP is
desired, then the getGroupedAvp and addGroupedAvp API calls provide the necessary
support.

Purpose:Access a Grouped AVP in a Diameter message

Prototype: my $gAvp = diameter::Message::getGroupedAvp($msg, $avp_name
[, $instance]);
The return value shall be:

• undef if the AVP name does not exist in the AVP dictionary,

• undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped AVP,

• undef if the AVP name is valid but the Diameter message does not contain a Grouped
AVP with that name,

• undef if the AVP name is valid but the Diameter message contains less Grouped AVPs
with that name than specified in $instance,

• A diameter::GroupedAvp Grouped AVP object that corresponds to the respective
instance of the Grouped AVP (or to the first instance if $instance is omitted).

The $gAvp diameter::Grouped AVP object can be used to manipulate the AVPs that it
contains using any of the API functions introduced so far:

$result = diameter::GroupedAvp::<API_function>($gAVP, <API_function_params>);
where the $gAVP object of type diameter::GroupedAvp replaces the $msg object of
type $diameter::Message and $result represents the return parameter of the respective API
function.

Chapter 10
The EDL API

10-9

Note:

getGroupedAvp works recursively to get a grouped AVP ($nested_gAVP)
contained in another grouped AVP ($gAvp):

my $nested_gAvp =
diameter::Message::getGroupedAvp($gAvp, $avp_name);

where $gAvp is a dimeter::GroupedAvp object

Purpose: Add a Grouped AVP to the end of a Diameter message

Prototype: my $gAvp = diameter::Message::addGroupedAvp($msg, $avp_name);
where $gAvp is a diameter::GroupedAvp object.

The return value shall be:

• undef if the AVP name does not exist in the AVP dictionary,

• undef if AVP name exists in the AVP dictionary but it is not defined as a Grouped
AVP.

A diameter::GroupedAvp Grouped AVP object can be further used to manipulate the
AVPs that it contains:

my $subscription_id = diameter::Message::addGroupedAvp($msg,
“Subscription-Id”);
diameter:GroupedAvp::addAvpValue($subscription_id, “Subscription-Id-
Type”, $avp_val);
diameter::GroupedAvp::addAvpValue($subscription_id, “Subscription-Id-
Data”, $avp_val);

Note:

addGroupedAvp works recursively to add a grouped AVP ($nested_gAVP)
within another grouped AVP ($gAvp):

my $nested_gAvp = diameter::Message::addGroupedAvp($gAvp, $avp_name);

where $gAvp is a diameter::GroupedAvp object

10.2 Diameter Transaction Stateful APIs

10.2.1 Internal Variables
This API is primary intended to enable a DCA App to interact with Mediation Rules
through Internal Variables. Internal Variables have been introduced by the Mediation
feature and can be configured. From Main Menu, navigate to Diameter, click

Chapter 10
Diameter Transaction Stateful APIs

10-10

Mediation and select Internal Variables. Internal Variables are persistent throughout the
lifetime of a Diameter transaction.

Purpose: Access Internal Variables

Prototype:

my $iv_ref = new diameter::InternalVarDef(“<IV_Name>”);
my $internalVarMap = diameter::Param::internalVarMap($param);

where $param is the opaque parameter passed to every event handler and <IV_Name> is the
name assigned to the Internal Variable. From the Main Menu, navigate to Diameter, select
Mediation and click on Internal Variables.

Note:

The Internal Variables are configurable at the B level, therefore the <IV_Name> must
be configured on all the sites. Otherwise, the initialization will fail when invoked on
those DA-MP located in sites where <IV_Name> does not exist.

Purpose: Set and GetInternal Variables

Prototype:

diameter::InternalVarMap::set($internalVarMap, $iv_ref, $val);
$val = diameter::InternalVarMap::get($internalVarMap, $iv_ref);

Enables setting values to and retrieving values from an internal variable, where $iv_ref
and $internalVarMap are initialized as shown before.

10.2.2 Diameter Transaction Context Variables
The Diameter transaction context variables offer Diameter transaction persistent storage,
similar to Internal Variables. Unlike Internal Variables, Diameter transaction context variables
are not configurable via the GUI (which provides for a much simpler API) and cannot be
shared with other features.

Purpose: Store Diameter transaction context variables

Prototype:

$err = dca::transctx::store(“<var_id>”, $var)

The function shall return undef if $var is undef or any error occurs (e.g. $var is a Perl hash or
array that cannot be successfully encoded into JSON or DSR cannot allocate more memory
space for the Diameter context variable) and 1 if the operation is successful.

Purpose: Retrieve Diameter transaction context variables

Prototype:

$var = dca::transctx::fetch(“<var_id>”);

Chapter 10
Diameter Transaction Stateful APIs

10-11

undef will be returned in case of failure (e.g. <var_id> is not found because no
variable with that name has been previously stored).

10.3 Read DCA App Configuration Data
This API enables a DCA App to access its configuration data which was specified and
provisioned as described in sections Define the configuration data structure and
Provision the Configuration Data.

When the Perl script is generated, the DCA App configuration data is converted into a
Perl variable. The Perl variable name is %dca::appConfig and is a hash (one key for
each table) of arrays (one index for each record) of hashes (one key for each field in
the table).

Read-only access on the DCA App configuration data is enforced using the
Const::Fast CPAN module and applies to the data included in the %dca::appConfig
definition (which is automatically generated from the DCA App configuration data).

Note that there are semantical differences from one Const::Fast version to another,
which affect the way %dca::appConfig can be subsequently manipulated in the Perl
script with regard to adding new records to %dca::appConfig or accessing records that
are not defined in %dca::appConfig.

For instance, in version 0.006, which is the one currently used, an attempt to read or
assign a value to an inexistent table (outermost hash key) %dca::appConfig will result
in a runtime error.

On the other hand, assigning values to inexistent indexes (table records) and/or
inexistent fields (innermost hash key) will succeed and can be subsequently
successful read, while reading from inexistent indexes and/or inexistent fields will
return undef. These indexes and fields will not be written back to the DCA App
configuration data.

Purpose: Read the DCA App configuration data

Prototype: $dca::appConfig{“<config_table_name>”}[<row_index>]
{“<field_name>”} for non-“single row” configuration tables,

$dca::appConfig{“<config_table_name>”}{“<field_name>”} for “single row”
configuration tables.

Example: Assuming a DCA App defines a configuration table called MyTable with two
fields FieldA and FieldB and provisions a few rows, it shall be possible to retrieve the
NOAM and SOAM provisioned data from the DCA app in the following way:

for $i (0 .. $#dca::appConfig{“MyTable”}) {
 dca::application::logInfo($dca::appConfig{“MyTable”}[$i]
{“Field1”});
 dca::application::logInfo($dca::appConfig{“MyTable”}[$i]
{“Field2”});
}

Chapter 10
Read DCA App Configuration Data

10-12

10.4 Routing API
The routing API enables a DCA App to perform some basic routing functions.

The dca::action::forward(), dca::action::answer($ans) and dca::action::drop() API
functions terminate the execution of the event handler. This means that the statements that
follow them in the Perl code are not executed. This also has a side effect on the UDR queries
initiated before invoking any of dca::action::forward(), dca::action::answer($ans) and
dca::action::drop(),the UDR queries are actually sent after the execution of the event
handler completes: the side effect is therefore that the UDR queries will be also not executed
(i.e. sent to the UDR).

Besides dca::action::forward(), dca::action::answer($ans) and
dca::action::drop(), an event handler’s run flow also terminates (as any other Perl
subroutine) when a return statement is encountered or when the enclosing curly bracket is
reached. In this case the implicit routing decision that the DCA framework takes is the one
configured for the runtime error behavior (section Configure the DCA App's General Options
and Behavior) even though this situation need not necessary be an error condition. However,
if the value returned from the event handler is negative, the DCA Runtime Errors alarm
(Alarm ID 33304) will also be raised.

Purpose: Complete the processing and drop the message

Prototype: dca::action::drop();

Note:

Invoking dca::action::drop() causes the event handler to immediately terminate
execution.

Purpose: Built a Diameter Answer

Prototype: $ans = new dca::application::answer(<error_code>, <error_text>,
<vendor_id>);
The function shall return undef in case of failure, or a diameter::Message object.

When receiving a Diameter request or answer this API function enables a DCA App to
construct a Diameter answer and either return it to the originator of the corresponding
Diameter request or, respectively, substitute the original Diameter answer message.

The EDL API (see section The EDL API) may be used to further process the $ans Diameter
answer (for example, add more AVPs).

Purpose: Send a Diameter Answer Created by the DCA App

Prototype: dca::action::answer($ans);

Note:

Invoking dca::action::answer($ans) causes the event handler to immediately
terminate execution.

Chapter 10
Routing API

10-13

Purpose: Complete the processing and pass the message

Prototype: dca::action::forward();
Enables a DCA App to pass a Diameter message to the Diameter Routing Layer for
routing.

Note:

Invoking dca::action::forward() causes the event handler to immediately
terminate execution.

Purpose: Specify an ART based on which a Diameter request shall be routed

Prototype: $err = dca::route::setART(<ART_table_name>);
The function shall return undef if the name of the ART does not exist (failure) or 1 if
success.

Before invoking dca::action::forward() on a Diameter request, this routing API
function enables a DCA App to specify which ART to be used for routing the respective
Diameter request.

Note: The ART is configurable at the B level, therefore the <ART_table_name> must be
configured on all the sites. Otherwise, the API function will fail when invoked on those
DA-MP located in sites where <ART_table_name> does not exist.

Purpose: Specify a PRT based on which a Diameter request shall be routed

Prototype: $err = dca::route::setPRT(<PRT_table_name>);
The function shall return undef if the name of the PRT does not exist (failure) or 1 if
success.

Before invoking dca::action::forward() on a Diameter request, this routing API
function enables a DCA App to specify which PRT to be used for routing the respective
Diameter request.

Note:

The PRT is configurable at the B level, therefore the <PRT_table_name> must
be configured on all the sites. Otherwise, the API function will fail when
invoked on those DA-MP located in sites where <PRT_table_name> does not
exist.

10.5 Debugging API
The Debugging API allows tracking the execution of the event handlers by supporting
the equivalent of “printf”, “log”, “echo”, etc. functions in other programming/scripting
languages.

The messages are logged in the dsr.DCA trace file (use tr.tail dsr.DCA). The following
masks may be applied using the tr.set command to filter the ERROR, INFO and

Chapter 10
Debugging API

10-14

WARNING error messages: 0x00000001 (error), 0x00000002 (info) and respectively
0x00000004 (warning).

All the traces generated by a DCA app using the API calls will be prefixed with the DCA
application name (in order to allow for further filtering e.g. using the grep utility).

Note however that in a production network DSR logs only the vital traces are therefore the
main debugging tool for DCA Apps in production networks is the IDIH feature.

Purpose: Retrieve the application name

Prototype:

$appname = dca::application::getAppName();

Purpose: Retrieve the version name

Prototype:

$vername = dca::application::getVersionName();

Note:

Besides debugging, another possible use case for reading the version name is
including it in the DCA app state stored on the UDR. This will support backward
compatibility in case the DCA app frequently changes the format of the DCA app
across DCA app versions.

Purpose: Retrieve the current state

Prototype:

$verstate = dca::application::getState();

Note:

The states returned can be either Trial or Production, since these are the only
states when the DCA App is executed.

Purpose: Generate a trace containing user-defined messages and having a severity of INFO

Prototype:

dca::application::logInfo(<message>);

The user-defined messages shall be logged into dsr.DCA (tr.tail dsr.DCA).

Purpose: Generate a trace containing user-defined messages and having a severity of
WARNING

Chapter 10
Debugging API

10-15

Prototype:

dca::application::logWarn(<message>);

Purpose: Generate a trace containing user-defined messages and having a severity
of ERROR

Prototype:

dca::application::logError(<message>);

10.6 Custom MEAL API
Once the Custom MEAL objects are differentiated from the Main Menu, navigate to
DCA Framework, select <DCA App Name>, select Custom MEALs screen (see
section Custom MEALs), they can be initialized and used from DCA Apps.

10.6.1 Counter Template API
(Required) <Enter introductory text here, including the definition and purpose of the
concept.>

Purpose: A DCA Appshall be able to bind to a Scalar Counter Custom MEAL by
referring to it by the Custom MEAL configured name:

Prototype:

my $all_Cnt = new dca::meal::counter(“MyCnt”);

where MyCnt is the name specified when differentiating a Custom MEAL template of
type “Counter” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom
MEAL object may be used in subsequent API calls to perform specific operations on
the Scalar Counter.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not
yet completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Counter.

Chapter 10
Custom MEAL API

10-16

Note:

As a matter of best practice, the initialization of the Custom MEAL objects shall be
performed in the main body of the Perl script, which is executed once right after a
successful compilation (rather than in an event handler):

die Custom MEAL differentiation failure
unless $obj = new dca::meal::<TemplateType>(“MyCustomMeal");

This ensures that a compilation error will be triggered if the binding process has
failed, for instance because there is a name mismatch between the Perl script and
the differentiation GUI screen. Using an undefined $obj later in the event handlers
will trigger run-time errors.

Purpose: A DCA Appshall be able to peg a Scalar Counter Custom MEAL:

Prototype:

$err = $all_Cnt->peg();

where $all_Cnt shall be a valid Scalar Counter Custom MEAL object.

The API call shall return 1 if success and undef if the operation on the underlying Comcol
object has failed.

Purpose: A DCA Appshall be able to bind to an Arrayed Counter Custom MEAL by referring
to it by the Custom MEAL configured name:

Prototype:

my $per_Cnt = new dca::meal::arrayedCounter(“MyArrayedCnt");

where MyArrayedCnt is the name specified when differentiating a Custom MEAL template of
type Counter and measurement type arrayed.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL
object may be used in subsequent API calls to perform specific operations on the Arrayed
Counter.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet
completed, or the un-differentiation process was initiated;

A Custom MEAL with that name exists, but it is not an Arrayed Counter.

Purpose: A DCA Appshall be able to peg a specific index of an Arrayed Counter Custom
MEAL:

Prototype:

$err = $per_Cnt->peg($index);

Chapter 10
Custom MEAL API

10-17

where $per_Cnt shall be a valid Arrayed Counter Custom MEAL object and $index is
the index to be pegged.

The API call shall return 1 if success and undef if the either operation on the
underlying Comcol object has failed or the index value is negative.

10.6.2 Rate Template

Purpose: A DCA Appshall be able to bind to a Scalar Rate Custom MEAL by referring
to it by the Custom MEAL configured name:

Prototype:

my $all_Rate = new dca::meal::rate(“MyRate");

where “MyRate” is the name specified when differentiating a Custom MEAL template
of type “Rate” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom
MEAL object may be used in subsequent API calls to perform specific operations on
the Scalar Rate.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not
yet completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Rate.

Purpose: A DCA Appshall be able to peg a Scalar Rate Custom MEAL:

Prototype:

$err = $all_Rate->peg();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return 1 if success and undef if the operation on the underlying
Comcol object has failed.

Purpose: A DCA Appshall be able to read the current value of a Scalar Rate Custom
MEAL:

Prototype:

$val = $all_Rate->readRate();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the current value in case of success
and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to read the average value of a Scalar Rate Custom
MEAL:

Chapter 10
Custom MEAL API

10-18

Prototype:

$val = $all_Rate->readAvgRate();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return an integer representing the average value in case of success and
undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to determine the current severity of the alarm associated
to an Scalar Rate template:

Prototype:

$err = $all_Rate->getSeverity();

where $all_Rate shall be a valid Scalar Rate Custom MEAL object.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared
• undef if the operation on the underlying Comcol object has failed.

Note: The severity values are defined as:

 use constant {
Cleared => 0,
Info => 1,
Minor => 2,
Major => 3,
Critical => 4,
};

which enables comparing them. For instance:

if ($all_Rate->getSeverity() >= dca::meal::Major)

will be true if the severity is Major or Critical and will be false if the severity if Minor. This also
applies to Basic as well as arrayed templates.

Purpose: A DCA Appshall be able to bind to an Arrayed Rate Custom MEAL by referring to it
by the Custom MEAL configured name:

Prototype:

my $per_Rate = new dca::meal::arrayedRate(“MyArrayedRate");

where MyArrayedRate is the name specified when differentiating a Custom MEAL template of
type “Rate” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL
object may be used in subsequent API calls to perform specific operations on the Arrayed
Rate.

Chapter 10
Custom MEAL API

10-19

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not
yet completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not an Arrayed Rate.

Purpose: A DCA Appshall be able to peg a specific index of an Arrayed Rate Custom
MEAL:

Prototype:

$err = $per_Rate->peg($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the
index to be pegged.

The API call shall return 1 if success and undef if either the operation on the
underlying Comcol object has failed or the index value is negative.

Purpose: A DCA Appshall be able to read the current value of a specific index of an
Arrayed Rate Custom MEAL:

Prototype:

$val = $per_Rate->readRate($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the
index the current value of which shall be read.

The API call shall return an integer representing the current value of the specified
index in case of success and undef if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA Appshall be able to read the average value of a specific index of an
Arrayed Rate Custom MEAL:

Prototype:

$val = $per_Rate->readAvgRate($index);

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index is the
index the average value of which shall be pegged.

The API call shall return an integer representing the average value of the specified
index in case of success and undef if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA Appshall be able to determine the current severity of the alarm
associated to an Arrayed Rate template:

Prototype:

$err = $per_Rate->getSeverity($index);

Chapter 10
Custom MEAL API

10-20

where $per_Rate shall be a valid Arrayed Rate Custom MEAL object and $index identifies
the particular index the alarm status of which shall be read.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor, dca::meal::Cleared
• undef if either the operation on the underlying Comcol object has failed or the index value

is negative.

10.6.3 Basic Template
Purpose: A DCA Appshall be able to bind to a Scalar Basic Custom MEAL by referring to it
by the Custom MEAL configured name:

Prototype:

my $all_Size = new dca::meal::basic(“MyBasic");

where MyBasic is the name specified when differentiating a Custom MEAL template of type
“Basic” and measurement type “scalar”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL
object may be used in subsequent API calls to perform specific operations on the Scalar
Basic template.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet
completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Scalar Basic.

Purpose: A DCA Appshall be able to set the value of a Scalar Basic Custom MEAL:

Prototype:

$err = $all_Size->setValue($value);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $value is the value
the Scalar Basic Custom MEAL shall be set to.

The API call shall return 1 if success and undef if the operation on the underlying Comcol
object has failed.

Purpose: A DCA Appshall be able to increment the value of a Scalar Basic Custom MEAL:

Prototype:

$err = $all_Size->increment($count);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $count is the value
the Scalar Basic Custom MEAL shall be incremented with.

The API call shall return 1 if success and undef if the operation on the underlying Comcol
object has failed.

Chapter 10
Custom MEAL API

10-21

Purpose: A DCA Appshall be able to decrement the value of a Scalar Basic Custom
MEAL:

Prototype:

$err = $all_Size->decrement($count);

where $all_Size shall be a valid Scalar Basic Custom MEAL object and $count is the
value the Scalar Basic Custom MEAL shall be decremented with.

The API call shall return 1 if success and undef if the operation on the underlying
Comcol object has failed.

Purpose: A DCA Appshall be able to read the current value of a Scalar Basic Custom
MEAL:

Prototype:

$val = $all_Size->getValue();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the current value in case of success
and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to read the average value of a Scalar Basic
Custom MEAL:

Prototype:

$val = $all_Size->getAvgValue();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return an integer representing the average value in case of success
and undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to determine the current severity of the alarm
associated to an Scalar Basic template:

Prototype:

$err = $all_Size->getSeverity();

where $all_Size shall be a valid Scalar Basic Custom MEAL object.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

• undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to bind to an Arrayed Basic Custom MEAL by
referring to it by the Custom MEAL configured name:

Chapter 10
Custom MEAL API

10-22

Prototype:

my $per_Size = new dca::meal::arrayedBasic(“MyArrayedBasic");

where MyArrayedBasic is the name specified when differentiating a Custom MEAL template
of type “Basic” and measurement type “arrayed”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL
object may be used in subsequent API calls to perform specific operations on the Arrayed
Basic template.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet
completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not an Arrayed Basic.

Purpose: A DCA Appshall be able to set the value of an Arrayed Basic Custom MEAL:

Prototype:

$err = $per_Size->setValue($value, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the
value of which shall be set and $value is the value it shall be set to.

The API call shall return 1 if success and undef if either the operation on the underlying
Comcol object has failed or the index value is negative.

Purpose: A DCA Appshall be able to increment the value of an Arrayed Basic Custom
MEAL:

Prototype:

$err = $per_Size->increment($count, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the
value of which shall be incremented and $count is the value it shall be incremented with.

The API call shall return 1 if success and undef if either the operation on the underlying
Comcol object has failed or the index value is negative.

Purpose: A DCA Appshall be able to decrement the value of an Arrayed Basic Custom
MEAL:

Prototype:

$err = $per_Size->decrement($count, $index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object, $index is the index the
value of which shall be decremented and $count is the value it shall be decremented with.

The API call shall return 1 if success and undef if either the operation on the underlying
Comcol object has failed or the index value is negative.

Chapter 10
Custom MEAL API

10-23

Purpose: A DCA Appshall be able to read the current value of an Arrayed Basic
Custom MEAL:

Prototype:

$val = $per_Size->getValue($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index is
the index the value of which shall be read.

The API call shall return an integer representing the current value of the specified
index in case of success and undef if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA Appshall be able to read the average value of an Arrayed Basic
Custom MEAL:

Prototype:

$val = $per_Size->getAvgValue($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index is
the index the average value of which shall be read.

The API call shall return an integer representing the average value of the specified
index in case of success and undef if either the operation on the underlying Comcol
object has failed or the index value is negative.

Purpose: A DCA Appshall be able to determine the current severity of the alarm
associated to an Arrayed Basic template:

Prototype:

$err = $per_Size->getSeverity($index);

where $per_Size shall be a valid Arrayed Basic Custom MEAL object and $index
identifies the particular index the alarm status of which shall be read.

The API call shall return:

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared

• undef if either the operation on the underlying Comcol object has failed or the
index value is negative.

10.6.4 Event Template
Purpose: DCA Appshall be able to bind to an Event Custom MEAL by referring to it by
the Custom MEAL configured name:

Prototype:

my $errorEvent = new dca::meal::event(“MyEvent");

Chapter 10
Custom MEAL API

10-24

where MyEvent is the name specified when differentiating a Custom MEAL template of type
“Event”.

The API call shall return a valid Custom MEAL object in case of success. The Custom MEAL
object may be used in subsequent API calls to perform specific operations on the Event.

In case of failure undef shall be returned. Possible failure cases are:

• No Custom MEAL with the specified name is currently defined;

• A Custom MEAL with that name exists, but either the differentiation process is not yet
completed, or the un-differentiation process was initiated;

• A Custom MEAL with that name exists, but it is not a Event.

Purpose: A DCA Appshall be able to generate an event (Info severity), raise an alarm (Minor,
Major, Critical severity) and clear an alarm (Clear severity):

Prototype:

$err = $errorEvent->log($severity, $addInfoText);

where $errorEvent shall be a valid Event Custom MEAL object, $severity is one of the
possible values (dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Cleared) and $addInfoText is the text that should be included in the alarm’s
additional information field.

The API call shall return 1 if success and undef if the operation on the underlying Comcol
object has failed.

Purpose: A DCA Appshall be able to determine whether an event or alarm is throttled:

Prototype:

$err = $errorEvent->isThrottled($severity);

where $errorEvent shall be a valid Event Custom MEAL object, $severity is one of the
possible values (dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Info).

The API call shall return:

• 1 if the event/alarm is throttled;

• 0 if the event/alarm is not throttled;

• undef if the operation on the underlying Comcol object has failed.

Purpose: A DCA Appshall be able to determine the current severity of an event or alarm:

Prototype:

$err = $errorEvent->getSeverity();

where $errorEvent shall be a valid Event Custom MEAL object.

The API call shall return:

Chapter 10
Custom MEAL API

10-25

• dca::meal::Critical, dca::meal::Major, dca::meal::Minor,
dca::meal::Info, dca::meal::Cleared

• undef if the operation on the underlying Comcol object has failed.

10.7 UDR API
The UDR API enables a DCA App to create, read, update and delete data in a UDR
DB. The UDR API calls work asynchronously and a callback subroutine is necessary
in order to fetch the result of the query.

10.7.1 The Prototype of Queries and Query Results
This section describes the common structure of the UDR API functions and how the
results of a UDR query can be retrieved in the Perl script. Section The UDR API
Functions further describes the particularities of each individual UDR API function.

10.7.1.1 Specifying the Query
All the UDR API functions share a common prototype:

$err = dca::udr::udrInstance(<GLOBAL_UDR>)-><API_function>(
 <key_type>, <key_data_type>, $key,
 <value_data_type>, $value,
 <callback_subroutine>,
);

where:

• <GLOBAL_UDR> is a string (a constant value or a scalar variable) containing the
global name of the UDR DB the query shall be sent to.

• <API_function> is one of: createOrRead, update, bulkDelete ..

• <key_type> is typically a constant value defined by the DCA App. It distinguishes
between different key types that a DCA App may use (e.g. IMSI, NAI, IP, IP_SRC,
etc.). For example, the key value "fred" of type "NAI" is a different key from
66.72.65.64 of type "IP", even though they have the same binary representation;

• <key_data_type> is pre-defined constant that describes the data type of the key
and must be one of:

– dca::udr::KeyDataType::BCD – the key shall be a scalar,

– dca::udr::KeyDataType::UINT32 – the key shall be a scalar,

– dca::udr::KeyDataType::UINT64 – the key shall be a scalar,

– dca::udr::KeyDataType::STRING – the key shall be a scalar,

– dca::udr::KeyDataType::IPv4 – the key shall be a NetAddr::IP object,

– dca::udr::KeyDataType::IPv6 – the key shall be a NetAddr::IP object.

Chapter 10
UDR API

10-26

Note:

There is no explicit data type for float numbers, float numbers will be converted
to strings.

• $key is a Perl variable that holds the key part of the key-value pair to be created, read,
updated or deleted.

• <value_data_type> is pre-defined constant that describes the data type of the key and
must be one of:

– dca::udr::StateDataType::BCD – the key shall be a scalar,

– dca::udr::StateDataType::UINT32 – the key shall be a scalar,

– dca::udr::StateDataType::UINT64 – the key shall be a scalar,

– dca::udr::StateDataType::STRING – the key shall be a scalar, an array reference or
a hash reference.

Note:

Arrays and hashes are encoded into JSON and stored in the UDR DB in string
format.

– dca::udr::StateDataType::IPv4 – the key shall be a NetAddr::IP object,

– dca::idr::StateDataType::IPv6 – the key shall be a NetAddr::IP object.

Note:

There is no explicit data type for float numbers, float numbers will be converted
to strings.

• $value is a Perl variable that holds the value part of the key-value pair to be written into
the UDR (via create or update operations).

Note:

Therefore that read and delete do not specify a $value parameter and as a
result also no <value_data_type> parameter;

• <callback_subroutine> is a string representing the name of the Perl subroutine that will
be invoked by the DCA framework to deliver the query result.

The API call shall return:

• if the parameters are successfully parsed and encoding into a Stack Event.

Chapter 10
UDR API

10-27

Note:

because the API call works asynchronously, at this stage the query
hasn't been sent yet, its outcome cannot be known, $err merely tells
whether a query could be successfully built.

• undef if parsing or encoding the parameters fails.

10.7.1.2 Retrieving the Query Result
The result of a UDR query can be retrieved in the callback function by using the
dca::udr::result() class. An error code will always be returned and some queries
also return data (consisting of the data type along with the data itself):

1. $err_code = dca::udr::result()->code(); Retrieves the error code. If the error
codes indicates success (dca::udr::ResultCode::Success) then some API
functions also return data, which can be retrieved using the dataType() and
data() methods described below.
A number of error codes are common to all UDR API functions:

• dca::udr::ResultCode::Success – indicates the query has successfully
executed the intended operation;

• dca::udr::ResultCode::AccessError – an error occurred on the UDR side
that prevented the query to be executed;

• dca::udr::ResultCode::SendError – an error occurred when attempting to
send the query, typically because of ComAgent overload (ComAgent related
alarms will be raised in this case);

• dca::udr::ResultCode::MaxStateSize – the size of either the key or the
data, the DCA App attempts to look up or respectively store in the UDR DB,
exceeds the configured maximum sizes (from Main Menu: DCA Framework,
select Configuration, "Maximum Size of Application State" and respectively
"Maximum Size of the Key" options)

• dca::udr::ResultCode::MaxEventReached – the maximum number of UDR
queries that a Diameter message event handler is allowed to send has been
exceeded (from Main Menu: DCA Framework, select <DCA App Name> and
click General Options, Then click on Max. UDR Queries per Message
option).

2. $data_type = dca::udr::result()->dataType();
If the result contains data, then datatype() will return the data type of the stored
data, i.e. one of: dca::udr::StateDataType::BCD,
dca::udr::StateDataType::UINT32, dca::udr::StateDataType::UINT64,
dca::udr::StateDataType::STRING, dca::udr::StateDataType::IPv4,
dca::udr::StateDataType::IPv6;. If the result contains no data, then datatype()
will return undef.

3. $data = dca::udr::result()->data()
If the result contains data, then data() will return the stored data.

If the result contains no data, then data() will return undef.

Chapter 10
UDR API

10-28

10.7.2 The UDR API Functions
Purpose: Attempts to create a key-value record in a UDR DB or fails if a record with the
same key already exists.

Prototype: (see also section Specifying the Query)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->create(
<key_type>, <key_data_type>, $key,
<value_data_type>, $value,
<callback_subroutine>);

Query Results: The possible result of the create API function are described in the table below
(see Retrieving the Query Result):

dca::udr::result()->code() dca::udr::result()->dataType() dca::udr::result()->data()

dca::udr::ResultCode::S
uccess

(The record does not exist and
was created)

undef undef

dca::udr::ResultCode::
AccessError,
dca::udr::ResultCode::S
endError
dca::udr::ResultCode::M
axStateSize
dca::udr::ResultCode::M
axEventReached

undef undef

undef undef

Purpose: Creates a key-value record in a UDR DB or returns the record, if a record with the
same key already exists.

Prototype:

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->createOrRead(
 <key_type>, <key_data_type>, $key,
 <value_data_type>, $value,
 <callback_subroutine>,
);

Query Results: The possible result of the create API function are described in the table
below:

Chapter 10
UDR API

10-29

dca::udr::result()->code() dca::udr::result()-
>dataType()

dca::udr::result()->data()

dca::udr::ResultCode:
:Success

(The record does not exist
and was created)

undef undef

dca::udr::ResultCode:
:DBError,
dca::udr::ResultCode:
:SendError
dca::udr::ResultCode:
:AccessError
dca::udr::ResultCode:
:MaxStateSize
dca::udr::ResultCode:
:MaxEventReached

undef undef

Purpose: Reads the value associated to a key from the UDR DB, or fails if the key is
not found.

Prototype:

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->read(
 <key_type>, <key_data_type>, $key,
 <callback_subroutine>,
);

Note:

No $value parameter is present since no value is supposed to be written into
the UDR DB.

Query Results: The possible result of the create API function are described in the
table below:

dca::udr::result()->code() dca::udr::result()-
>dataType()

dca::udr::result()->data()

dca::udr::ResultCode:
:Success

(The record exists and was
read)

The data type of the existing
record

The existing record

Chapter 10
UDR API

10-30

dca::udr::result()->code() dca::udr::result()-
>dataType()

dca::udr::result()->data()

dca::udr::ResultCode:
:DBError,
dca::udr::ResultCode:
:SendError
dca::udr::ResultCode:
:AccessError
dca::udr::ResultCode:
:MaxStateSize
dca::udr::ResultCode:
:MaxEventReached

undef undef

Purpose: Attempts to update the value associated with a key in the UDR DB or fails if a
record with the key could not be found.

Prototype: (see also Specifying the Query)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->update(
 <key_type>, <key_data_type>, $key,
 <value_data_type>, $value,
 <callback_subroutine>);

Query Results: The possible result of the create API function are described in the table
below (see also Retrieving the Query Result):

dca::udr::result()->code() dca::udr::result()->dataType() dca::udr::result()->data()

dca::udr::ResultCode::Suc
cess
(The record exists and was
updated)

undef undef

dca::udr::ResultCode::D
BError,
dca::udr::ResultCode::S
endError
dca::udr::ResultCode::A
ccessError
dca::udr::ResultCode::M
axStateSize
dca::udr::ResultCode::M
axEventReached

undef undef

Purpose: Deletes a key-valuerecord from the UDR DB, or fails if the key is not found.

Chapter 10
UDR API

10-31

Prototype: (see also Specifying the Query)

$err = dca::udr::udrInstance(<GLOBAL_UDR>)->bulkDelete(
 <key_type>, <key_data_type>, $key,
 <callback_subroutine>);

Note that no $value parameter is present since no value is supposed to be written into
the UDR DB.

Query Results: The possible result of the create API function are described in the
table below (see also Retrieving the Query Result):

dca::udr::result()->code() dca::udr::result()-
>dataType()

dca::udr::result()->data()

dca::udr::ResultCode::
Success

(The record exists and was
deleted)

undef undef

dca::udr::ResultCode::
DBError,
dca::udr::ResultCode::
SendError
dca::udr::ResultCode::
AccessError
dca::udr::ResultCode::
MaxStateSize
dca::udr::ResultCode::
MaxEventReached

undef undef

Chapter 10
UDR API

10-32

	Contents
	My Oracle Support
	What's New in This Guide
	1 Introduction
	1.1 References
	1.2 Acronyms and Terminologies

	2 DCA Activation and Deactivation
	2.1 DCA Activation
	2.1.1 DCA Framework Activation
	2.1.2 DCA App Activation
	2.1.3 Post-Activation DCA App State

	2.2 DCA Deactivation
	2.2.1 DCA Application De-Activation
	2.2.2 DCA Framework De-Activation

	3 DCA App Provisioning
	3.1 The Blacklist DCA App
	3.2 Prerequisites
	3.3 DCA App Provisioning Process
	3.3.1 Configure the DCA App's General Options and Behavior
	3.3.2 Create New Development Application Version
	3.3.3 Define the configuration data structure
	3.3.4 Provision the Configuration Data
	3.3.5 Provision the Business Logic
	3.3.5.1 Where is the Perl script being executed?
	3.3.5.2 How do the Event Handlers get invoked?
	3.3.5.3 How does the DCA App configuration data get accessed?
	3.3.5.4 What is the main part good for?

	3.3.6 Render the Flow Control Chart
	3.3.7 Test the DCA App Version
	3.3.8 Promote the DCA App Version to Production

	4 DCA Application Lifecycle
	5 Developing Statefull DCA Apps
	6 A Statefull DCA App Using the UDR DB
	6.1 The CountULR DCA App
	6.2 Prerequisites
	6.3 The Process
	6.3.1 Configure the DCA App's Global Options and Behavior
	6.3.2 Create New Development Application Version
	6.3.3 Configure the UDR DBs
	6.3.3.1 Configure UDR DB as Remote server
	6.3.3.1.1 ComAgent Configuration on DSR
	6.3.3.1.2 Comagent Configuration on UDR
	6.3.3.1.3 Comagent Connection Status Validation

	6.3.3.2 Enable Security Profile on Active UDR NOAM for DSA Application
	6.3.3.3 Audit Time Configuration on Active UDR NOAM

	6.3.4 Define the Configuration Data Schema
	6.3.5 Provision the Configuration Data
	6.3.6 Provision the DCA App Business Logic
	6.3.6.1 What does a “state” consist of?
	6.3.6.2 What are Asynchronous API Calls and Callbacks?
	6.3.6.3 How is the UDR state returned to the Perl script?

	6.3.7 Render the Flow Control Chart
	6.3.8 Test the DCA App Version
	6.3.9 Promote the DCA App Version to Production

	7 Monitoring a DCA App
	8 A DCA App Using Custom MEALs
	8.1 The Rate DCA App
	8.2 Prerequisites
	8.3 The Process
	8.3.1 Differentiate a C-MEAL
	8.3.2 Configure the DCA App's General Options and Behavior
	8.3.3 Create New Development Application Version
	8.3.4 Define the Configuration Data Schema
	8.3.5 Provision the Configuration Data
	8.3.6 Provision the DCA App Business Logic
	8.3.7 Render the Flow Control Chart
	8.3.8 Test the DCA App Version
	8.3.9 Promote the DCA App Version to Production

	9 GUI Overview
	9.1 NO/SO differences
	9.2 NO Screens
	9.2.1 Configuration Screen
	9.2.2 Custom MEALs
	9.2.2.1 View Custom MEALs
	9.2.2.2 Configure the Counter Custom MEAL Template
	9.2.2.3 Configure the Basic Custom MEAL Template
	9.2.2.4 Configure the Rate Custom MEAL Template
	9.2.2.5 Configure the Event Custom MEAL Template

	9.2.3 General Options Screen
	9.2.4 Trial MPs Assignment Screen
	9.2.5 Application Control Screen
	9.2.6 Create New Development Screen
	9.2.7 Copy to New Development Screen
	9.2.8 Export Pop-Up Window
	9.2.9 Import Pop-Up Window
	9.2.10 Development Environment
	9.2.11 Tables Screen
	9.2.12 Provision Tables Screen

	9.3 SO Screens
	9.3.1 Application Control Screen
	9.3.2 Export Pop-Up Window
	9.3.3 Import Pop-Up Window
	9.3.4 Tables Screen
	9.3.5 Provision Tables Screen

	9.4 System Options

	10 APIs
	10.1 The EDL API
	10.1.1 API to Manipulate the Diameter Header
	10.1.2 API to Manipulate the Diameter AVPs
	10.1.3 API to Manipulate the Diameter Grouped AVPs

	10.2 Diameter Transaction Stateful APIs
	10.2.1 Internal Variables
	10.2.2 Diameter Transaction Context Variables

	10.3 Read DCA App Configuration Data
	10.4 Routing API
	10.5 Debugging API
	10.6 Custom MEAL API
	10.6.1 Counter Template API
	10.6.2 Rate Template
	10.6.3 Basic Template
	10.6.4 Event Template

	10.7 UDR API
	10.7.1 The Prototype of Queries and Query Results
	10.7.1.1 Specifying the Query
	10.7.1.2 Retrieving the Query Result

	10.7.2 The UDR API Functions

